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ABSTRACT 

We consider the problem of modeling point-level (‘geostatistical’) spatial count 

data with a large number of zeros. We develop a model that is compatible with the 

scientific assumptions about the data generating process. We use a two-stage spatial 

generalized linear mixed model framework for the counts, modeling incidence, resulting 

in 0-1 outcomes, and abundance, resulting in positive counts, as separate but dependent 

processes, and utilize a bivariate Gaussian process model for characterizing the 

underlying spatial dependence. We describe a Bayesian approach and study several 

variants of our two-stage model, consisting of varying covariance and cross-covariance 

structures for the underlying bivariate Gaussian random process. We fit the models via 

Markov chain Monte Carlo (MCMC) methods We study several MCMC algorithms, 

including a version of the Langevin-Hastings algorithm, for exploring the complicated 

posterior distribution efficiently, and recommend an algorithm that is fairly automated. 

Finally, we demonstrate the application of our modeling and computational approach on 

both simulated data and a real data set from an ecological study and compare the 

performance of the various two-stage models based on inference and prediction. 
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Chapter 1 
 

Introduction 

In many applications it is reasonable to assume that observations distributed 

across geographical space will likely be correlated. This is very natural in the 

environmental setting, where spatial structure is induced by various energy inputs (light, 

thermal, chemical, etc.) resulting in patchy structures (Legendre and Fortin, 1989).  In 

turn, these biotic processes induce aggregation or gradients of organisms and other 

phenomena.  Therefore an ecological phenomenon located at a given sampling point may 

be similar to other points close by, or even some distance away. 

Spatial models account for this dependence by assuming that correlation is 

present in all directions and that this dependence weakens with increasing distance 

between data points.  Spatial models emerged in part from an area of study known as 

geostatistics, a collection of methods whose main objective is to predict an unobserved 

value of an underlying process in continuous space. 

1.1   Classical Geostatistics 

In classical geostatistical methodology, we assume that the data Y = {Y1, …, Yn} 

is observed at a finite number of sampling locations in two-dimensional space {xi: x ∈ A,  

i = 1, …, n}, and that the data was generated according to the model  

( ) ( )T
i i i iY x S x Z= + +d β  (1.1)
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where d(x) is a known vector of explanatory variables, β is a vector of fixed parameters, 

S(x) is an unobserved Gaussian process with E[S(x)] = 0  and cov{S(x), S(x’)} = 

σ2ρ(x, x’) and the Zi are mutually independent N(0, τ2).  Thus, Y- d(x)Tβ  can be regarded 

as a ‘noisy’ version of the underlying spatial stochastic process S(x).  Equivalently, we 

can also state that, conditionally on S(⋅), the Yi are mutually independent with the 

following distribution:  

  

Predicting S(x0), the realized value of S at an arbitrary location x0, is at the center 

of a procedure called kriging, also called spatial smoothing or spatial interpolation.  

Under the preceding assumptions, the kriging predictor that minimizes the prediction 

mean square error ( ) ( )( )2

0 0Ŝ x S x⎡ ⎤Ε −⎢ ⎥⎣ ⎦
 takes the form  

where the kriging weights ( )0iw x are derived from the estimated mean and covariance 

structure of the data.   In practice, the parameter β of the mean function is first estimated, 

followed by the parameters of the covariance function using a data-analytic tool called 

the variogram.  The estimated covariance function is then taken as the true covariance 

function and used to determine the wi’s. 

( ) ( ) ( )( )2 ,  ~
ind T

i i i iY S x N x S x τ+d β  (1.2)

( ) ( )( )0 0
1

ˆ ˆ( ) ,
n

T
i i i

i
S x w x y x

=

= −∑ d β  (1.3)
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The current practice of classical kriging has several limitations.  First, in 

estimating the prediction variance, no allowance is made for the fact that the parameters 

of the covariance functions were estimated.  Second, the Gaussian assumption is 

restrictive, given the current wide use of the method for data in situations where 

normality does not hold or cannot be verified.  Third, the method is intended for 

predicting realizations and their linear combinations, and not for the general case of 

predicting (possibly non-linear) functionals of the distribution.  

1.2  Model-based Geostatistics  

Diggle et al. (1998) proposed a model-based approach to predicting non-linear 

functionals of realized values (e.g., the maximum value over a region, or the probability 

of exceeding a specified threshold) under possibly non-Gaussian realizations.   In the 

same way that McCullagh and Nelder (1989) extended the normal linear model for 

independent data using generalised linear models, Diggle et al. extended the classical 

geostatistical methodology for spatial data by relaxing the linear assumptions in Eq. 1.1 

as follows: 

1. S(x) is a Gaussian process with E[S(x)] = 0 and cov[S(x), S(x')] = σ2ρ(x, x’)  

2. Conditionally on S, the random variables Yi, i= 1, ..., n are mutually 

independent, with distributions fi{y| S(xi)}= f(y|Mi), where Mi = E[Yi| S(xi)] 

3. h(Mi) = d(xi)Tβ + S(xi) for some known link function h, explanatory 

variables d(xi) and parameters β 
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Therefore, the unobserved spatial process S(x) is still intrinsically Gaussian, but 

the observed process Y is no longer linear in S.  It is the expression of the Gaussian 

quantity h(Mi) = d(xi)Tβ + S(xi) that is no longer Gaussian, unless h is the identity link 

and S has a Gaussian density function. Conditional on the latent process S, the Y(xi) are 

independent with distributions fi{y| S(xi)} in the exponential family.   Y is still dependent 

on S but only through a link function h, where h(E[Yi| S(xi)]) = d(xi)Tβ + S(xi).   The 

authors used Markov chain Monte Carlo (MCMC) techniques to estimate and make 

inferences about the parameters, predict realizations at arbitrary locations, and estimate 

non-linear functionals of the posterior distribution.  

1.3  An Extension to Semicontinuous Variables 

As a further extension to non-Gaussian realizations, we consider the case of 

spatially distributed semicontinuous variables.  A semicontinuous variable has a portion 

of responses equal to a single value (usually zero) and a continuous, often skewed, 

distribution of the remaining values.  Two-part models for semicontinuous variables have 

a long history in economics and policy analysis (see for example, Duan et al., 1983, 

Manning et al., 1987, and Leung and Yu, 1996).  In the longitudinal setting, Olsen (1999) 

and Olsen and Schafer (2001) cite several examples: adolescent substance abuse, 

dividend income, and expenditures on durable goods and medical care.  In modeling 

semicontinuous longitudinal data, the authors recoded the semicontinuous response, Yij, 

into two variables,  
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where j = 1, …, ni indexes the time points for individual i = 1, …, m, and g is a monotone 

increasing function (e.g., log) that will make Vij approximately Gaussian and satisfy the 

linear model assumptions.  They then fitted a two-part random-effects model: one for the 

logit probability Uij = 1 and one for the mean conditional response E(Vij|Uij=1).  This 

approach allowed a different set of covariates for each part of the model, i.e., a set of 

covariates for the probability of nonzero response and another set for the mean of 

nonzero responses.  At the same time, a joint distribution for the random coefficients 

from each part provided a mechanism for relating the two parts of the model. 

Modeling semicontinuous variables enables us to specify one viable model for 

two separate but related phenomena: the binary indicator of whether there is at least one 

occurrence, and the distribution of positive occurrences. These models allow the 

specification of different covariates for each process as well as a mechanism to relate the 

two parts.   

1.4  Motivating Example 

In the study of insect populations, geostatistical tools have been used to capture 

the degree of spatial dependence that is present in most populations (see, for example, 

ij

ij

ij ij

ij

1  if 0
                                             

0  if 0

and
( )        if 0

                                           
irrelevant  if 0

ij

ij

Y
U

Y

g Y Y
V

Y

≠⎧
= ⎨ =⎩

≠⎧
= ⎨ =⎩

 (1.4)
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Legendre and Fortin 1989, Schotzko and O’Keefe 1989, Schotzko and Smith 1991, 

Williams et al. 1992, Rossi et al. 1992).  Advances in Global Positioning Systems (GPS) 

technology have permitted rapid and accurate capture of field data at finer scales of 

resolution and greater sampling intensity, for instance in the study of Colorado potato 

beetle (CPB) populations (Blom and Fleischer, 2001; Blom et al., 2002).  The authors 

described the spatial dynamics of CPB populations in potato fields.  In one experiment, 

counts of CPB large larvae and other life stages per meter-row were observed weekly in 

sample locations in a field measuring approximately 85 × 85 meters.  The smallest 

resolution available with the GPS technology in use at the time was one meter.  One 

complication encountered in this study is that, due in part to the level of resolution of the 

observations, a substantial proportion of the observations was zero.  Figure 1.1 shows 

histograms of some of the weekly observations of densityof large larvae per meter, 

showing the spikes at zero.  The expected counts for a Poisson variable with the same 

mean as the sample is clearly not a good fit for the observed data.  
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Some of the other data sets with relatively higher densities appear to have a more 

standard distribution, possibly Poisson.  In these cases, the methods described in Diggle 
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Fig. 1.1:  Number of CPB larvae per meter during weeks 7 to 9, observed (left column) and
expected under a Poisson distribution with the same mean (right column). 
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et al. (1998) may be suitable.  Alternatively, the data may be transformed (e.g., log) into a 

distribution that is approximately Gaussian and analyzed using trans-Gaussian kriging 

(Cressie 1993). The distribution may be seen as a manifestation of two biological 

processes: incidence, as shown by presence or absence; and abundance, as shown by the 

mean of positive counts.  Studying each process separately but simultaneously can be 

useful, from the point of view of research as well as pest management.  At varying times 

and insect stages, specific interest may also be on various functionals of the distribution, 

in addition to the usual spatial predictions. 

In CPB, there are two life stages of interest: adult and large larvae. CPB is 

thought to invade new potato crops principally by walking or through short-range flights 

from nearby sites where they have burrowed over the winter (see, for example, French II 

et al, 1993; Hough-Goldstein and Whalen, 1996; and Lashomb and Ng, 1984).  Initially, 

the whole-field adult density may be low, but considerable interest would be on where 

these adults are, because they are the principal agents for within-field populations to 

follow.  Therefore, the incidence of immigrating adults and the factors affecting it are 

very important. From the point of view of population studies, it is important to identify 

the within-field factors that predispose the presence of an immigrating adult.  This 

involves testing hypotheses on the mean part of the process.  From the pest management 

point of view, a relevant functional would be a map of the risk of incidence, which may 

indicate future population centers.  Locations of upper quantiles of severity may also 

point to nearby origins or sources of overwintered adults (i.e., adults that have spent the 

winter burrowed in nearby fields, and emerge in the summer to migrate to new crops). 
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Adults lay eggs, and the eggs hatch and become larvae, the most destructive stage. 

At this point, incidence and severity are both important, because of the spatial fidelity 

(i.e., they are usually not mobile) and damage potential of CPB larvae.  The spatial 

dependence between incidence and abundance (e.g., how abundance in one location 

correlates with incidence in a nearby location) would also be interesting.  A map of the 

mean surface would show areas where the adults appear to have laid eggs.  The factors 

affecting the adults’ location choices would be useful from the behavioral point of view.  

From the management point of view, a map showing the probability of exceeding a mean 

economic threshold would be needed. 

1.5  Objectives 

The primary goals of this research are: 

1. To develop two-stage models for semicontinuous spatial variables and 

study the properties of such models; and  

2. To develop computationally efficient algorithms to perform inference and 

prediction for these models.
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Chapter 2 
 

Geostatistics Background 

2.1  Introduction to Geostatistics and Kriging 

Spatial statistics is concerned with the summarization of and inference from data 

whose spatial dimension is potentially relevant.  Spatial statistical methods have been 

developed under three broad categories (Diggle, 1996): continuous spatial variation, 

discrete spatial variation, and spatial point processes.  Cressie (1993) uses slightly 

different terminology: geostatistical data, lattice data, and point patterns.  In this study, 

we focus on continuous spatial variation, applicable to any phenomenon in which a 

random variable of interest, say Y(x), is, in principle, obtainable at any location x within a 

(typically two-dimensional) spatial region D.  The variable Y may itself be continuous, 

discrete, or categorical, but is presumed to have been generated from a spatially 

continuous process.  Examples of such variables are radiation level that can be measured 

at any location within a specified region, insect count that can be observed in any location 

in a field, whether or not a particular organism or species is present in any specific 

location in a designated area of observation.   

In this study we assume an underlying Gaussian process for the random effects in 

our model.  A Gaussian process is an infinite dimensional real valued stochastic process, 

fully defined by a mean and covariance function, for which every finite dimensional 

subset has a multivariate normal distribution.   Gaussian processes are widely used in 
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geostatistics, where it is common to assume a Gaussian stochastic process S, uniquely 

defined by a mean and covariance function.  A single realization produces a surface ( )S ⋅ , 

and we have finite vector of locations x from which we obtain our observations ( )S x .  

Cressie (1993) cites two reasons why Gaussian processes are important in geostatistics:  

"The first is the pragmatic reason that, upon assumption of the Gaussian process, virtually 

all prediction, estimation, and distribution theory are considerably easier."  Using 

classical statistical methods, spatial analysis for Gaussian random fields is more 

straightforward.  For example, Schabenberger and Gotway (2005) note that the best linear 

unbiased predictor for ( )0S x at an unobserved location 0x  is generally only best in this 

restricted class of (linear unbiased) predictors.  However, under the Gaussian process 

assumptions, "this is the best predictor (under squared error loss) among all possible 

functions of the data."    The second reason cited by Cressie (1993) "comes from 

asymptotic considerations where the net result of many small order (possibly non-

Gaussian) effects is approximately Gaussian" (from the Central Limit Theorem). 

We introduced classical geostatistics in Section 1.1 and provide more details here.  

We define 2x∈R  to be a generic data location in two-dimensional Euclidean space and 

Y(x) is the observed quantity at location x.  If 2D ⊂ R  is a fixed region of interest, and if 

we let x vary continuously over D, we generate the multivariate random field or spatial 

stochastic process { }( ) :Y x x D∈  (Cressie, 1993).  We assume that the stochastic process 

that generated Yi =Y(xi) has the form 

( ) ( )   T
i i i iY x S x Z= + +d β  (2.1)
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with distributional assumptions as described in Section 1.1.  The first set of terms, 

d(x)Tβ, represents large-scale variation, also called the trend.  S and Z represent the 

stochastic part of the model.  S is a zero-mean Gaussian random field with a known 

covariance function, and is the phenomenon of interest in most applications because it is 

a key component of prediction. The Z’s are independent zero-mean random errors, 

representing all other factors contributing to variability that do not appear to be spatially 

relevant.  This is also called the nugget effect in the literature.  

The process S(x) is typically not directly observable.  The structure of this latent 

process can only be inferred from observations on Y.    Geostatistics is mainly concerned 

with predicting S(x0), the value of S at an arbitrary location x0, or some linear functional. 

Linear predictors for this purpose are called kriging predictors.  Cressie (1989, 1990) 

gives a historical account of the development of various forms of kriging.     

Diggle et al. (1998) summarized the current practice of kriging, and their main 

points are restated here.  Let ( )1( ), , ( ) T
nY x Y x=Y …  be the vector of observations, 

( )1= ( ) , , ( )
TT T

nx xM d β d β…  be the n-element mean vector, K be the n x n covariance 

matrix with (i, j)th element Cov[S(xi), S(xj)], and I the n x n identity matrix.  Then, by the 

assumptions stated in Section 1.1, we have ( )2 ,  τN∼ +Y M K I .  Next, consider S(x0), 

the unobserved (i.e., latent) variable at location x0, and further let k be the n-element 

vector with ith element Cov[S(xi), S(x0)] , and k0= Cov[S(x0), S(x0)].   Y and S(x0) are 

jointly distributed as  

( )
2

0 0

τ
,

0 kTMVN
S x

⎛ ⎞⎛ ⎞⎛ ⎞ +⎛ ⎞
∼ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

Y M K I k
k

 (2.2)
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By well-known properties of the multivariate normal distribution (Anderson, 

1958), the conditional distribution of S(x0)|Y can be directly deduced from the joint 

distribution in Equation 2.2:  

The kriging predictor 0
ˆ( )S x  is that function of Y that minimizes the prediction 

mean square error ( )2

0 0
ˆ( ) ( )E S x S x⎡ ⎤−⎢ ⎥⎣ ⎦

.  That function is ( ) ( )0 0
ˆ E |S x S x= ⎡ ⎤⎣ ⎦Y , with 

variance ( ) ( )0 0
ˆ |Var S x Var S x⎡ ⎤ = ⎡ ⎤⎣ ⎦⎣ ⎦ Y , both obtained directly from Equation 2.3. 

In practice, β  is estimated from the data by assuming that the covariances are 

known, K is nonsingular and ( )d X  is of full rank, then computing the generalized least 

squares (GLS) estimator ( )( ) ( )
1-1 -12 2ˆ ( ) τ ( ) ( ) τT T

−

= + +β d X K I d X d X K I Y  for use in M 

in Eq. 2.3.   Stein (1999) showed that under these assumptions, the kriging estimator 

( )0Ŝ x  with the plug-in β̂  is the best linear unbiased predictor for ( )0S x . 

In the kriging predictors above, K, k and k0 are fixed since the covariance 

function is assumed known.  This is rarely the case in practice, and hence the choice of 

covariance function and its parameters is pivotal to the kriging process.  Typically, the 

covariance function is chosen by modeling the variogram (or, strictly speaking, the semi-

variogram).  If the field has a constant mean (i.e., ( ) μT
ix =d β ), the variogram quantifies 

the dependence in the data as a function of distance, h, and is defined as 

( ) ( ) ( ) ( )( )1 12 2
0 0|  τ ,  τT TS x N k

− −
∼ + − − +Y k K I Y M k K I k  (2.3)

[ ]1( )  ( ) ( )
2

h Var Y x h Y xγ = + −  (2.4)
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 A method-of-moments variogram estimator due to Matheron (1962) is 

where { }( ) ( , ) :|| ||i jN h i j x x h≡ − = , the set of all pairs of locations (xi, xj) that are a 

distance h (or close to h) apart,  and |N(h)| is the number of distinct elements of N(h).  

Kitanidis (1997) explains the process of constructing the experimental (or empirical) 

variogram using Equation 2.5.  Cressie (1993, pages 69-83 and references therein) also 

describes other methods for variogram estimation. 

A parametric family of variograms is chosen based on consistency with the shape 

of the empirical variogram and what is currently known about the spatial process, such as 

degree of smoothness and measurement error. The more common forms include linear, 

spherical, exponential, spherical, Gaussian, or wave, which are described in most 

standard geostatistics books, for example Cressie (1993), Kitanidis (1997), and Isaaks 

and Srivastava (1990).  The parameters of the chosen variogram are then estimated using 

various curve fitting methods such as ordinary, generalized and weighted least squares 

methods as described by Cressie (1993, pages 90-101).   The resulting model variogram 

and its associated covariance function is used to generate K, k and k0, and plugged into 

Equation 2.3 as the known covariance. 

However, in the more general case of a nonconstant mean (called universal 

kriging) where both the covariance and regression parameters are unknown, variogram 

(and covariance) estimation are more involved.  One approach (Neuman and Jacobson, 

1984) is to estimate β using ordinary least squares (i.e., assuming S=0), compute a 

variogram estimator from the residuals, fit a variogram model, then obtain a GLS 

( )2

( )

1ˆ( )  ( ) ( )
2 ( ) i j

N h
h Y x Y x

N h
γ = −∑  (2.5)
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estimate β̂ based on the fitted model, and then iterate between updating the variogram 

and the GLS estimate β̂ .   Section 3.4.3 of Cressie (1993) discusses this and other issues 

in estimating a variogram under universal kriging. 

2.2  Alternatives to Classical Geostatistical Methods 

Current research in spatial statistics has built upon classical geostatistical methods 

and has expanded the methodology in several areas.  The three areas that concern this 

study are: (1) selection and parametric estimation of the covariance function as an 

alternative to the current semi-parametric approach of using variograms; (2) improving 

estimates of predictive uncertainty by incorporating uncertainty in covariance estimation, 

and (3) modeling non-Gaussian realizations in space.  

2.2.1    Selection and Parametric Estimation of Covariance Functions 

As described in Section 2.1, the classical geostatistical practice of choosing the 

covariance function and estimating its parameters based on variograms proceeds in a 

rather ad hoc manner.  However, likelihood-based methods of parameter estimation have 

also been proposed, most notably maximum likelihood estimation (MLE) and restricted 

maximum likelihood (REML) estimation.  

Vecchia (1988, 1992) propose an iterative procedure for finding MLEs of the 

covariance parameters to alleviate the large-sample computational limitations of 

conventional MLE such as those observed by Mardia and Marshall (1984).  Mardia and 
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Watkins (1989) suggest the use of profile log likelihoods as a possible solution to the 

difficulties pointed out by Warnes and Ripley (1987), such as long ridges in which the 

likelihood is essentially constant, and convergence to the nearest local maximum when 

Fisher scoring was used.  Likewise, Stein (1999, p. 173) argues that these difficulties are 

not necessarily shortcomings of the approach; instead, these are potential computational 

problems when using iterative procedures for finding the maximum when the data 

provide no information for choosing among the parameter values along the ridge.   Like 

Mardia and Watkins, Stein suggests plotting the log likelihood or judiciously chosen 

profile log likelihoods to detect these ridges.  

Using REML for estimating parameters in spatial covariances was first proposed 

by Kitanidis (1983).  Zimmerman (1989) gives details of REML in observations on a 

regular lattice and how computations can be reduced in some special cases.  

2.2.2    Incorporating Uncertainty in Parameter Estimation 

The greater part of studying spatial processes is identifying the covariance 

structure of the underlying random field S, but the fact that this covariance function is 

almost always estimated is ignored in classical kriging.  Estimates of prediction variance 

do not include uncertainty in the assumed covariance structure, and could be overly 

optimistic about the precision of the kriging predictors.  This is a potential limitation of 

classical kriging (Diggle et al., 1998).   

Bayesian inference provides a way to incorporate parameter uncertainty in 

prediction by treating the parameters as random variables and integrating over the 
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parameter space to obtain the predictive distribution of any quantity of interest (Ribeiro 

and Diggle, 1999a).  Assuming a Gaussian process, Kitanidis (1986) examined the effect 

of parameter uncertainty in a Bayesian framework and derived posterior distributions and 

estimators in the case of (1) known covariance parameters but partially unknown drift 

coefficients, and (2) unknown drift and partially unknown covariance parameters.  Omre 

(1987) and Omre and Halvorsen (1989) also used Bayesian analysis to incorporate 

uncertainty in the mean part of the model, and showed that the choice of prior for the 

mean part defines a continuum of models between simple kriging (constant mean, 

( ) μTx ≡d β ) and universal kriging (the linear mean model as defined in Section 1.1).   

Cressie (1993, Section 3.4.4) summarized previous work on Bayesian kriging. 

Focusing on uncertainty in the covariance parameters, Handcock and Stein (1993) 

derived Bayes predictive distributions for Gaussian random fields having Matérn 

covariance functions.  The authors showed that when the uncertainty in mean and scale 

parameters of the covariance function is accounted for, inferences from the resulting 

Bayesian predictive distribution can differ significantly from those based on the usual 

plug-in predictive distribution, which raises the question of whether the plug-in predictor 

is optimal when the covariance function is estimated (as is often the case). 

Ribeiro and Diggle (1999a) adopt a fully parametric model-based approach, using 

hierarchical spatial linear models with specified covariance structures and independent 

priors for the model parameters.  In addition to the usual predictive distributions for 

values at arbitrary locations, the authors derived posterior distributions for model 

parameters, under different scenarios of prior knowledge, model choice and degrees of 

uncertainty. 
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2.2.3   Modeling non-Gaussian Spatial Data 

Up to this point, we have only considered modeling Gaussian realizations of 

spatially continuous phenomena.  The normality assumption conveniently guarantees the 

optimality of the kriging predictors in Section 2.1 and makes available all the well-known 

results for Gaussian distributions, so that likelihood-based estimation and Bayesian 

inference, for instance, are fairly straightforward (Ribeiro and Diggle, 1999a).  

For non-Gaussian realizations {Y(x): x ∈ D}, and when the objective is to predict 

the value of Y (x0), it is fairly common to transform the data so that the resulting variable 

Y*(x) = φ(Y(x)) is (approximately) normally distributed, perform kriging in the 

transformed scale to obtain the optimal predictor *
0

ˆ ( )Y x , then back-transform to the 

original scale to obtain an estimate ( )1 *
0 0

ˆ( ) ( )Y x Y xφ−= .  Cressie (1993) showed that this 

naïve estimate is biased, and, for the lognormal case, described a lognormal kriging 

method that incorporates a bias correction.  For a few other transformations, the author 

refers to Shimizu and Iwase (1987) for closed form expressions of unbiased predictors.    

Trans-gaussian kriging, also described in Cressie (1993), likewise employs standard 

kriging techniques after applying a normalizing transformation on the non-Gaussian 

observations, then obtaining an (approximately) unbiased predictor using the δ-method. 

Stein (1999), however, observes that a process being “close to” Gaussianity does 

not guarantee that the linear predictor derived from normality assumptions is a good 

predictor.  Using a Poisson process as an example, he showed that, although in some 

sense the process is nearly Gaussian, the best linear predictor performs infinitely worse 

than the best non-linear predictor under the model. 
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Trans-Gaussian kriging also potentially suffers from the same constraints as 

classical kriging, primarily underestimation of prediction variance.  Additionally, there is 

an added factor of uncertainty in the choice of the normalizing transformation.   De 

Oliveira et al. (1997) extended the work of Handcock and Stein (1993) with the Bayesian 

transformed Gaussian (BTG) approach.  In the same way that the Bayesian approach 

integrated other sources of uncertainty into classical kriging, BTG offers a realistic 

enhancement to trans-Gaussian kriging, taking into account other major sources of 

uncertainty, including uncertainty in the choice of a normalizing transformation. 

Diggle et al. (1998) and Diggle et al. (1997) remain within the Bayesian 

framework but take another approach in dealing with departures from normality.  As 

discussed in Section 1.2, Diggle et al. relaxed the Gaussian assumptions in spatial models 

by generalizing to realizations in the exponential family, in the same way that McCullagh 

and Nelder (1989) extended the classical normal linear model to non-normal realizations 

through generalized linear mixed (GLMM) models.  The authors used Markov chain 

Monte Carlo (MCMC) techniques utilizing Metropolis-Hastings algorithms to estimate 

and make inferences about the parameters, predict realizations at arbitrary locations, and 

estimate non-linear functionals of the posterior distribution. 

One of the main constraints in the above implementation of spatial GLMM is that 

the authors used a (Metropolis) fixed-scan algorithm, where the covariance parameters, 

the regression parameters, and each of the random effects are updated in turn in each 

scan.  This method of updating is computationally intensive because every update of each 

random effect Si involves matrix inversions in calculating the conditional variance of this 

element given the n-1 other random effects.  Building upon Diggle’s approach, 
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Christensen et al. (2000) and Christensen and Waagepetersen (2002) proposed a more 

efficient MCMC algorithm using Langevin-Hastings (also called Metropolis-adjusted 

Langevin) updates.  In spatial applications, the Langevin-Hastings algorithm has proved 

very successful (Møller, 2003) because it simultaneously updates the entire vector of 

random effects or regression coefficients based on gradient information.  The authors 

used this algorithm and more informative priors to model weed count data.  

In the case of spatial logistic modeling for dense point-level binary data Liang et 

al. (2008) proposed modeling at two scales, a macro and a micro scale.  In this 

application, the authors encountered difficulties in estimating spatial correlation 

parameters and instead used them as tuning constants by fixing them at desired or 

reasonable values.  This work focused more on estimating the regression parameters 

under a range of fixed correlation parameters.  

2.3  Cross-covariance Functions 

In our discussion regarding two-part models for semicontinuous variables in 

Section 1.3  we introduced the notion of recoding the semicontinuous variable Y into two 

variables (U, V) representing incidence and abundance, respectively, and developing a 

model for this bivariate response.  The proposed two-part spatial model for (U, V) will be 

described in more detail in Chapter 3, but one of the key components of this model will 

be a joint specification of the covariance function for the bivariate Gaussian stochastic 

process  (S, Z) where  
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The matrices ΣS and ΣZ are the usual covariance matrices in the univariate case, and ΣSZ 

is the cross-covariance between the two processes S and Z.   

Earth science applications often employ cross-covariance functions in cokriging, 

also called multivariable spatial prediction (see for example, Webster and Oliver, 2001; 

Goovaerts, 1998; Stein and Corsten, 1991; Ver Hoef and Barry, 1998; Ver Hoef and 

Cressie, 1993).  A variety of approaches for multivariable spatial data in a hierarchical 

Bayesian framework are now available.  See, for instance, Chapter 7 in Banerjee et al. 

(2004).   

A general approach to constructing valid covariance models assumes that the 

covariance between S and Z is the sum of several covariance models, so that the 

covariance function in Eq. 2.6  is constructed as: 

where ( )kg  are various covariance functions and the matrix of coefficients are positive 

semidefinite.  Oliver (2003) considered the difficulties of generating a covariance 

function using the above formulation, particularly the limitation that they do not allow 

one to specify different covariance models for the two fields.  It is not possible, for 

example, for one field to have a Gaussian covariance and the other an exponential 

covariance, unless the two fields are uncorrelated. The author developed an alternative 

way of constructing valid models for cross-covariance that addresses this limitation.   

0
~ ,

0
S SZ

T
SZ Z

S
MVN

Z
⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

Σ Σ
Σ Σ

 (2.6)

( ) ( )
1 1
11 12 11 12

11 1
21 22 21 22

k k
S SZ

i j k i jT k k
SZ Z

b b b b
g x x g x x

b b b b
⎡ ⎤ ⎡ ⎤⎡ ⎤

= − + + −⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Σ Σ
Σ Σ

, (2.7)
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Given the covariance functions and S ZΣ Σ  and their correlation ( ) ( )( ),i icorr S x Z xρ = , 

a valid cross-covariance model can always be generated by taking ,  T
SZ S ZL LρΣ =  

where  and S ZL L are the respective Cholesky factorizations such that  and T
S S SL LΣ =    

.T
Z Z ZL LΣ =  

 Oliver's approach is quite practical because it allows greater flexibility in the 

choice of covariance functions while accommodating limited information about the cross-

covariance.  In many cases the nature of the spatial dependence for each random field is 

well established, possibly including situations where these do not have the same 

covariance structure.  At the same time, there might be limited knowledge regarding the 

spatial covariance between the variables of interest, except perhaps their correlation when 

these are observed in the same location.  In this approach these are the only information 

one needs to construct a valid cross-covariance function:  the covariance functions and 

the correlation between the two variables.   We found it useful in deriving the covariance 

function under the assumption that the S random effects are independent, the Z random 

effects have exponential covariance, and the two variables are correlated. 

2.4  Models for Semicontinuous Variables 

In this section, I examine (1) two classes of models that have been applied to 

semicontinuous outcomes from cross-sectional studies: two-part models and sample 

selection models; (2) an extension of the two-part approach to model longitudinal data; 

and (3) models for spatial data with excessive zeros. 
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In the econometric literature, two-part models and sample selection models (also 

called Heckman’s model) are widely used in the econometric literature to study 

semicontinuous outcomes.   There is continuing debate on which model is better (see for 

example, Duan et al., 1983, Manning et al., 1987, and Leung and Yu, 1996), but the 

choice largely depends on the parameters of interest as well as the process which 

generated the semicontinuous data.   

Two-part models (Manning et al., 1981 and Duan et al., 1983) break down the 

semicontinuous response Yi, 1, ,i n= …   into two variables (Ui, Vi) where Ui = I(Yi >0) 

and Vi = Yi |Yi>0.  Each variable is then modeled separately, the first a probit equation for 

Ui and the second a linear model (usually on the log scale) for the positive responses: 

where Xi is a vector of explanatory variables, and and α β are unknown parameters.  This 

formulation allows us to study the semicontinuous response Y in two stages: first, the 

probability of a positive response, then the distribution of Y conditional on it being 

positive.  In addition to its practical appeal, the conditional specification of the variables 

results in the likelihood being the product of two likelihoods ( ) ( )2
1 2 and ,σL Lα β , where 

L1 is based on the entire sample and L2 is based on cases having Ui = 1.  Therefore we can 

estimate the two models separately because the likelihood is multiplicatively separable, 

even if the equations in 2.8 are not necessarily independent.        

( )

( ) ( )

-1

2

              Pr( 1| )
and

              log |  ,   ~ 0,

T
i i i

T
i i i i i

U X X

V X X Nδ δ σ

Φ = =

= +

α

β

 (2.8)
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 An alternative to the two-equation approach is Heckman’s (1974, 1976, 1979) 

sample selection model.  In this specification, semicontinuous responses are due to lack 

of information on some sector of the population.   We are concerned with two processes 

of interest: 

 where Xi and Wi are vectors of explanatory variables, and α β are unknown parameters, 

and εi and δi are zero-mean error terms with [ ]ε | δ 0i iE ≠ .  However, * * and i iY D  are 

usually latent variables, and the observed sample consists of individuals 1, ,i n= …  with 

the following observed variables:  

The value of *
iD  determines whether the variable *

iY  would be observed ( )*i.e., i iY Y= , or 

whether 0iY = .   A common example is the study of female wages ( *Y ), where the 

decision to work might be a function of an unobserved process D*, and it is clear that 

some factors would affect both variables.  When the value of D* is such that the female 

subject decided to work (D =1), then we have a positive outcome and *Y Y= .  Otherwise, 

Y = 0, and we have no information on what non-working female subjects would have 

earned had they decided to work. 

*

*

                  ε
and

                  δ

T
i i i

T
i i i

Y X

D W

= +

= +

β

α

 (2.9)

*

*

                 *
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1  if  0
                   

0 otherwise
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i
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D
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=
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= ⎨
⎩
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If the process of interest is *
iY , the response over the whole population, and all we 

have is the subsample of iY ’s, Heckman (1974, 1976) showed that OLS estimation of β  

using only the available subsample of positive responses produces biased estimates 

because of sample selection bias.   A number of remedies have been proposed to correct 

for this bias. Maximum likelihood estimation (Heckman, 1974) relies heavily on the 

normality of the errors.  A two-stage estimation procedure (Heckman, 1979) first models 

the probability that D* > 0 using the whole sample, then uses the subsample of positive 

observations and the results in the first stage to consistently estimate the parameters of 

interest, β .  There are fully parametric and semiparametric versions of these two 

approaches, reviewed in Vella (1998).  Still within the sample selection model, Greene 

(1994, 1997) developed a parallel method for count data with excess zeros, particularly 

for Poisson and Negative Binomial regression models. 

The sample selection model is suitable when the process of interest is the 

unconditional behavior of the whole population, but we have no information on some 

individuals because a related process determines whether or not they are observable.  

Zero outcomes correspond to lack of information on these individuals.  In contrast, two-

part models are appropriate for studying the process in two stages: first, the process that 

produces zero vs non-zero outcomes, then the behavior conditional on positive outcomes.   

In two-part models, zeros are real outcomes, not representing insufficient information.  

Therefore, for the type of spatial phenomena that we are considering in this research, the 

two-part conditional specification is more suitable than the sample selection approach.  
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The above argument was Olsen and Schafer’s (2001) justification for choosing 

the two-part approach to model semicontinuous longitudinal data Yij, where j = 1, …, ni 

indexes the time points for individual i = 1, …, m.   As described in Section 1.3, Yij was 

recoded into two variables, Uij and Vij, then fitted with two random effects models, one 

for the logit probability of Uij =1 and one for the mean conditional response E(Vij|Uij=1): 

 

where ( ) ( )1~ Bernoulli π ,  π π , ,π ,  
i

T

ij ij i i inU = … and α β  are fixed effects, ci and di are 

random effects, and ( )20,i Nε σ∼ .   Equation 2.11 is computed on the whole sample, 

while Equation 2.12 is based only on the observations where Uij = 1, so that 

* * and  i iX Z are the rows of Xi and Zi that correspond to positive responses in individual 

i’s data matrix.  In addition to incorporating random effects to account for individual 

heterogeneity, the model also allowed for correlation between ci and di: 

Another approach to account for excess zeros in counts is zero-inflated Poisson 

(ZIP) regression, first proposed by Lambert (1992) in a manufacturing setting.  ZIP 

assumes that a process will be in an imperfect state with probability 1- pi, during which 

the distribution of defectives is assumed to be Poisson(λi).  During this state, zero counts 

are still possible.  However, when the process is in a perfect state with probability pi, 

( )logit πi i i iX Z c= +α  (2.11)

* * εi i i i iV X Z d= + +β  (2.12)
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during which it will produce no defectives.  The response Yi is a mixture of 0 with 

probability pi and Poisson (λi) with probability 1- pi.  The responses ( )1, , T
nY Y=Y …  are 

assumed to be independent with mean vectors ( )1, , T
np p=p …  and ( ) 1, T

nλ λ=λ …  

related to the covariates through the canonical link functions ( )logit =p Bβ and 

( )log =λ Gγ , where B is the design matrix of covariates for the probability of being in a 

perfect state and G is the design matrix of covariates related to the number of defectives 

in the imperfect state; these two sets of covariates do not have to be the same.  Heilbron 

(1994) attempted to simplify the two-part model for count data by assuming that the 

covariates for each part are identical. In zero-altered models, the probability of a zero is a 

function of the mean of the distribution for the positive counts.    

Extensions of the ZIP approach to clustered (Hur et al. 2003), longitudinal 

(Hedeker and Gibbons 2005) and spatial (Agarwal et al. 2002) data have been proposed.  

To model spatial data with excessive zeros, Agarwal et al. (2002) formulated a general 

spatial ZIP model as 

where ϕ, γ are spatial random effects and W1, W2 are appropriate incidence matrices.  B 

and G are specified design matrices which may share common covariates, and β and α 

are their corresponding parameter vectors.  The rest of the paper was developed for the 

case where W1=I and W2=0, so that the spatial random effects are incorporated only in 

the positive part of the model.  The authors fitted the model within a Bayesian 

( ) ( ) 2log ,   logit ,ϕ= + = +1λ Bβ W p Gα W γ  (2.14)
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framework.  For the spatial random effects, they employed a Markov random field 

specification and used a conditional autoregressive (CAR) model for the covariance.  

Rathbun and Fei (2006) also used the ZIP approach in which the excess zeros are 

generated by a spatial probit model.  Under this model, an excess zero is generated at a 

given site if the realization of a Gaussian random field falls below a threshold, for 

instance a minimum measure of habitat suitability in an ecological survey.  Using the 

notation of Eq. 2.14, the spatial binary field is defined as ( )2=  I ζ+ >Y Gα W γ  where γ 

is a zero-mean Gaussian random field with a specified covariance function.  The set of 

locations where Yi =1 is interpreted to be the habitat suitable to a species of interest.  The 

spatial ZIP model is then taken as the count Zi=0 if Yi = 0, and selecting Z from a Poisson 

distribution with mean  ( )expi iBλ ′= β  if Yi = 1.  The authors fitted the model within a 

Bayesian framework.  The random effects were assumed to vary continuously in space, 

with a covariance function from the Matérn class.   

  It is important to note that a ZIP model is a mixture of two distributions: a 

Poisson (or other common distribution) and another that is degenerate at zero.  This 

model is appropriate when there are two mechanisms that can produce a zero observation.  

First, zero observations may arise from the distribution degenerate at zero, for instance if 

a sampled habitat was unsuitable for the species of interest.  A zero observation may also 

arise from the Poisson distribution, for instance if the habitat is suitable but the organism 

was not present at the time of observation, or was present but not detected because of 

observer error.  In ecological modeling, zero observations from the non-degenerate 



29 

 

distribution have been called false negative observations because the organism is present 

but not counted. 

An alternative to the ZIP approach is a two-part model (also called two-stage or 

hurdle model), which we discussed earlier in this subsection in the context of 

econometric data.  In a hurdle model, one part models the probability of "clearing the 

hurdle" and generating the non-zero count, and the other part is a zero-truncated 

distribution for the positive observations.  The observed semi-continous variable is still 

from a mixture model because one model generates zeros and another models the 

distribution of the positive observations.  However, in this approach all zeros are 

considered true negative observations, i.e., in an ecological setting, the organism is truly 

not present.   These and other approaches to modeling ecological data with excess zeros 

are discussed in detail in Martin et al. (2005), Ridout et al. (1998), Potts and Elith (2006), 

and Tu (2002). 

Ver Hoef and Jansen (2007) include space-time random effects to investigate 

haul-out patterns of harbor seals on glacial ice, and compared the hurdle model to other 

spatial ZIP models.   The authors implemented the models in the context of Gaussian 

Markov random field models for areal (aggregated) or lattice data.   Markov random 

fields deals with stochastic processes defined on a countable index of spatial sampling 

units, typically defined by a partitioning of a continuous region into politically or 

geographically designated sub-regions, such as counties in a state or pixels in an image. 

The authors fitted the models within a Bayesian framework, using a CAR model for the 

spatial random effects and a first-order autoregressive model (AR1) to account for 

temporal dependence.
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Chapter 3 
 

The Two-part Spatial Model  

3.1  The Model 

Consider the semicontinuous response at sample location xi, ( ) , 1, ,i iY Y x i n= = … .   

We decompose Yi into two variables, a binary part and a discrete (or continuous) part: 

There are n observations for U, of which n1 ≤ n are equal to 1, and the rest are 0. For 

convenience, we order the data so that the 1’s are the first n1 observations.  There are n1 

observations for V, corresponding to the first n1 observations of U. 

Analogous to the generalized spatial model approach of Diggle et al. (1998), we 

condition on the bivariate spatial stochastic processes S(x) and Z(x).  For a finite set of 

locations ( )1, , ,nx x=x …  these variables are distributed as  

1  if 0
                       

0  if 0
and

             if 0
                        

irrelevant  if 0.

i
i

i

i i
i

i

Y
U

Y

Y Y
V

Y

>⎧
= ⎨ =⎩
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= ⎨ =⎩
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The matrices ΣS (n x n) and ΣZ (n1 x n1) are the usual covariance matrices in the one-part 

case, and the cross-covariance matrix ΣSZ (n x n1) accounts for the relationship between 

the two processes S and Z.   

Conditional on S and Z, U and V are mutually independent, with distributions 

As in the generalized linear mixed model for independent variables, U and V depend on 

the unobserved Gaussian spatial process only through their respective expected values Ai 

and Bi, where  

for some known link functions hS(⋅) and hZ(⋅), vectors of known explanatory variables 

dS(⋅) and  dZ(⋅) with dimensions p and k, respectively, and vectors of fixed effects α and 

β of dimensions p and k, respectively. 

3.2  Preliminary Model for the Motivating Example 

For the CPB application discussed in Section 1.4, we propose a Bernoulli 

distribution for the binary part of the model, truncated Poisson for the discrete part, and 

an exponential covariance function. Keeping the variable definitions in Equation 3.1,  

( )( ) ( ) ( )
( )( ) ( ) ( )

,

,

| ; ,  where | ,

| ; ,  where | , .
S i i S i i i i

Z i i Z i i i i

f u S x f u A A U S x

f v Z x f v B B V Z x

= = Ε ⎡ ⎤⎣ ⎦
= = Ε ⎡ ⎤⎣ ⎦
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β
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( ) ( ) ( )
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and subsequently link these realizations to the underlying Gaussian process through 

We note that a truncated Poisson variable has probability distribution 

which is in canonical form, with the logarithmic function as canonical link.  

Finally, we assume exponential covariance for S and Z,  

for some 2 2σ 0,  σ 0,  θ 0 and θ 0.S Z S Z> > > >  The cross-covariance function is constructed 

as described by Oliver (2003) by taking T
SZ SZ S ZL LρΣ =  where   and S ZL L   are the 

respective Cholesky factors where ,  and ,T T
S S S Z Z ZL L L LΣ = Σ =   and ρSZ  is the correlation 

between S and Z at the same location ( ) ( )( )( )i.e.,  ,i iS x Z xρ .   In this formulation, 

therefore, there are three unknown parameter vectors: ( )0 1 1α ,α , ,α ,
T

p−=α …  

( )0 1 1β ,β , ,β ,T
k−=β … ( )2 2and θ , θ , , σ ,σS Z SZ S Zρ=γ . 

( ) ( ) ( )
( ) ( ) ( )

logit   

log   

T
i S i i

T
i Z i i

A x S x

B x Z x

= +

= +

d α

d β
 (3.6)
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3.3  Model Features  

The model as described has several desirable features, due mainly to its 

flexibility.  A two-part model allows us to examine the features of each component of a 

semicontinuous response, permitting a closer look at one or both parts as appropriate.  

The model permits the sets of covariates and fixed effects to differ between the two 

components, thus allowing the covariates to impact each part of the response in a 

different way.  For instance, the factors determining where CPB large larvae are likely to 

be found (i.e., where the adults have laid eggs), dS(x), may not be the same conditions 

that determine whether they will thrive (i.e., where more of them have survived), dZ(x).  

Even if the covariates are common to both parts, the magnitude of effects, α and β, may 

still differ. 

The underlying spatial process is still Gaussian, so this is not a major departure 

from the present practice of classical geostatistics.  However, by embedding the 

underlying Gaussian process into a more generalized error structure, we expand the class 

of models that can be modeled directly.  Finally, the cross-covariance function ΣSZ allows 

the two parts of the model to be related.  In the CPB example, the strength of the cross-

correlation between S and Z relates the severity of infection in location xi, V(xi), to 

incidence in another location xj, U(xj).      

Our approach differs from the ZIP models employed by recent works of Agarwal 

et al. (2002) and Rathbun and Fei (2006) with respect to model construction as well as 

incorporation of spatial dependence.  As we describe in Section 2.4, the zero observations 

in ZIP models can come from true or false negatives, whereas a two-part model only has 
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true zero observations.  We consider the zero observations in the CPB large larvae count 

in our application to be true negatives because the larvae are not mobile and are easily 

detected on potato leaves, and therefore it is highly unlikely that they would be 

undetected or not present at the time of observation.  In this data set we consider the 

"hurdle" that determines presence or absence to be a combination of habitat suitability as 

well as whether or not the adult CPB laid eggs on the plant in a specific location..  

Our two-stage approach is similar to Ver Hoef and Jansen (2007), separating the 

binary and count processes.  They implement the two-stage model in the context of 

Gaussian Markov random field models for areal (aggregated) data.   Their model is 

specified in terms of conditional, rather than joint, distributions, incorporating local 

dependence between spatial units.   

Our model differs from Ver Hoef and Jansen (2007) because we assume that the 

zero-inflated observations are geostatistical.  In particular, we assume they arise from a 

bivariate stochastic process on a continuous spatial domain.  The geostatistical setting 

allows us to interpolate realizations in unobserved locations while also giving us the 

ability to study the dependence in the spatial process, since covariance function 

parameters have a more natural interpretation and do not rely on definitions of sub-

regions and neighborhoods, which can be arbitrary. This model is useful in many 

ecological and biological settings where such data are common.  The model is specified 

jointly, allowing varying degrees of association that is typically a function of distance 

between pairs of observations. We also include a mechanism to relate the two parts of the 

model via a cross-covariance between the spatial random effects.  However, in our 

applications in Chapter 5 and Chapter 6, we demonstrate the flexibility of our approach 
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by specifying simpler covariance structures for the random effect (S, Z), including two 

sub-models where S and Z are independent random vectors, which is the assumption in 

their model.   In this sense we can consider the Ver Hoef and Jansen (2007) model as a 

special case of our two-stage model specification.    
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Chapter 4 
 

Modeling and Computation 

4.1  The Distribution of the Semicontinuous Variable  

We have two observed vectors ( ) ( )Tn
T

n vvuu
1

,, and ,, 11 …… == vu  whose mean 

values depend on the regression parameters and α β  as well as the unobserved and related 

Gaussian processes ( )1, ,  T
ns s=s … and ( )1, , T

nz z=z … .  Under the assumptions given in 

Section 3.1, the unconditional density of (u, v) is given by the (n+n1)-fold integral 

where ∏∏
==

==
1

11
,

n

i
i

n

i
i dzddsd zs , ( )0 1 1α ,α , ,α

T
p−=α … ,  and ( )0 1 1β ,β , ,β T

k−=β … . The function 

( )zsg mm ,
1,  is the (m+m1)-dimensional multivariate normal probability density of the first m 

and m1 elements of s and z, respectively.   For instance, in our proposed model for the 

motivating example in Section 3.2, (S, Z) are normally distributed with zero mean and 

covariance matrix determined by the parameter vector ( )2 2θ , θ , , σ ,σS Z SZ S Zρ=γ .  In 

Equation 4.1  and throughout this text we also implicitly condition on the covariates 

( ) ( ) and S Zx xd d , which are assumed known. 

( ) ( ) ( ) ( ) zszsβαvu ddgzvfsuff nn
n

i
iiZ

n

i
iiS  ,,|,|,

1

1

,
11

∫ ∏∏ ⎥
⎦

⎤
⎢
⎣

⎡
=

==
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Given the underlying Gaussian variables (S, Z), the (Ui, Vi) are independent.  

Moreover, because of the conditional specification of the two-part model, their likelihoods 

given (S, Z) are multiplicatively separable. 

The unconditional density in Equation 4.1 will be our basis for estimating parameters 

and predicting values at arbitrary locations.   Some work on this is presented in the 

succeeding sections. 

4.2 Choice of Priors 

In the case of spatial GLMM applications, there is limited guidance on choosing 

priors, and even less so in our case of a two-part spatial GLMM.   

We used independent priors for all parameters.  For the covariance parameters, we 

use log-uniform proper priors for ( ),  S Zθ θ  and uniform proper priors for ( ), σ ,σSZ S Zρ .  

The log-uniform prior on a finite interval, ( ) [ ]1
1 2, log ,t tπ θ θ θ−∝ ∈ was employed by 

Christensen et al. (2000) and they show that, along with other conditions, the posterior is 

proper in the case of the spatial GLMM for Poisson observations.   Stein (1998) points out 

that one reason for the fat upper tail of the  posterior distribution of θ  in the  exponential 

covariance function 2cov( ( ), ( )) expi j S S i jS x S x x xσ θ⎡ ⎤= − −⎣ ⎦ under the uniform prior used 

by Diggle et al. (1998) may be that once θ exceeds a certain value, the observations are 

essentially uncorrelated, so that further increases in θ have almost no effect on the 

correlation matrix.   We avoid this by choosing a prior that reduces the likelihood of larger 

values of θ.   For ( ),S Zσ σ , uniform priors on the square root of variance parameters in 
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hierarchical models has recently been suggested by Gelman (2006).  Likewise, Ver Hoef and 

Jansen (2007) use diffuse uniform priors for all σ, to keep random effects from becoming 

too large and causing numerical instability.  They also put a uniform prior [0, 1] on all 

autoregression parameters.   

We used improper uniform priors for all regression parameters ( )0 1 1α ,α , ,α
T

p−=α …  

and ( )0 1 1β ,β , ,β T
k−=β … to reflect lack of prior information.   

4.3  Prediction, Estimation and Inference 

Suppose we wanted to predict S and Z at an arbitrary location x0. The unconditional 

density of (S0, Z0, U, V) is given by the (n+n1)-fold integral 

 Therefore, the conditional density of ( )0 0( ), ( ) | ,S x Z x U V  is the ratio of 

Equations 4.1 and 4.2,  

At this arbitrary location, the generalized linear predictor and prediction variance for 

S0 are  

( ) ( ) ( ) ( ) zszsβαvu ddzsgzvfsufzsf nn
n

i
iiZ

n

i
iiS  ,,,,|,|,,, 001,1

11
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and similarly for Z0.  It is clear that since the distribution of (U, V) is a complex multivariate 

function, expressions Equations 4.4 and 4.5 are analytically intractable, except when we use 

the identity link.   

In addition to predicting at arbitrary locations, we are also interested in estimating the 

regression parameters  and α β , and testing the significance of individual coefficients.  It is 

important to note that these parameters have a conditional interpretation, in that α  reflects 

the effect of the covariates ( )S ixd on [ ]|i iE U S and β  the effect of covariates ( )Z ixd  on 

[ ]| , 1i i iE V Z U = .   

Properties of S and Z, as individual and joint processes, are also of interest.  

Separately, the covariance functions of S and Z reveal the spatial persistence of incidence 

and abundance, respectively.  Jointly, we can study the cross-covariance structure of these 

two processes. Finally, other quantities of interest would be functionals of the distribution 

itself.  For instance, upper quantiles of incidence will show where the highest risk for 

incidence lies.  The probability that mean count will exceed a given threshold will also 

reveal areas that potentially require some management intervention.  

In all the above quantities of interest, the complexity of the distribution rules out 

closed form expressions for estimators and standard errors. 

( ) ( ) ( )
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22
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4.4  Computational Strategies 

4.4.1    General Approach 

We can decompose the model into its different components and dependencies, as in 

Figure 4.1.  Recall that γ is the vector of parameters associated with the selected covariance 

function, and and α β  are the regression parameters for the means of U and V, respectively.  

U depends on α  and the unobserved vector S, and likewise V depends on β  and Z.  The 

node (S0, Z0) is relevant only when the interest is on prediction.  Notice that γ  is 

conditionally independent of U and V given (S, Z), and therefore all the spatial dependence 

is contained in the relationship between S and Z, which are normally distributed.  This 

specification allows us to model spatial dependence in the conventional geostatistical 

framework. 

Models of this kind are in a class known as generalized linear mixed models or 

GLMM (Breslow and Clayton, 1993), generalized linear models that include one or more 

random effects.   A popular approach is to use a Bayesian version of the GLMM, by 

specifying priors for the parameters.  Markov chain Monte Carlo (MCMC) algorithms can 

then be used to fit such Bayesian models (Zeger and Karim, 1991; Clayton, 1996; Olsen, 

1999).   For spatial data, Clayton and Kaldor (1987) and Besag et al. (1991) mapped disease 

risk, incorporating spatial dependence among the discrete spatial regions by assuming a 

Markov random field model and then calculating the posterior distributions of quantities of 

interest using Gibbs sampling (Geman and Geman, 1984).   
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Diggle et al. (1998) and Christensen and Waagepetersen (2002) used Bayesian 

inference via MCMC to apply generalized linear mixed models (GLMM) to geostatistical 

data, incorporating spatial dependence by assuming that the random part of the model is a 

spatially continuous Gaussian process.  The use of MCMC for estimation and prediction in 

model-based geostatistics, specifically with GLMM for spatial data, is presented well in 

Diggle et al. (2002).     

To fit the two-part spatial GLMM model, we also took a Bayesian approach to 

estimation and inference.  We used MCMC techniques to simulate realizations from our 

complex posterior distribution by repeatedly sampling from the more tractable conditional 

and marginal distributions.   

 

Fig. 4.1:  The components of the model and their structural dependencies. (Adapted from 
Diggle et al., 1998) 
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From a Bayesian perspective, we are interested in the joint posterior distribution 

( ), |P γ α,β,S, Z U, V  for inference and ( )0 0, | , ,P S Z U, V γ α,β,S, Z  for prediction.  

Assuming independent priors, the posterior distributions are fully characterized by these 

conditional distributions: 
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MCMC enables simulation of outcomes from a desired joint posterior distribution by 

sampling repeatedly from the conditional and marginal distributions that completely 

determine the posterior distribution.  For our problem we set up a Markov chain with 

transition probabilities following the conditional distributions in equations 4.8 through 4.12, 

then sampled repeatedly from each conditional distribution given the most recent values of 

the other unknowns, for instance sampling ( 1)k+γ  from ( )( ) ( ) ( ) ( ) ( ) ( )| ,k k k k k kP γ U ,V ,α ,β ,S Z . 

After a sufficiently long burn-in period of B iterations, we consider the process to have 

converged to the desired joint posterior distribution ( ), |P γ α,β,S, Z U, V .  This distribution 

can be approximated by the empirical distribution of M draws, 

( ){ }( ) ( ) ( ) ( ) ( ) : , 2 ,...,k k k k k k B r B r B Mr= + + +γ ,α ,β ,S ,Z  where r is large enough for the draws 

to be nearly uncorrelated, and M is chosen to give sufficient precision to the empirical 

distribution of interest.  

4.4.2    The Metropolis-Hastings Sampling Algorithm 

To sample from the conditional distributions in equations 4.8 through 4.12, we used 

algorithms based on the Metropolis-Hastings (MH) algorithm (Metropolis et al., 1953; 

Hastings, 1970).  MH algorithms generate Markov chains which converge to a target 

( ) ( )
( ) ( )

| |

| |

P P

P P

=

=

Z U,V,α,β,S,γ Z V,β,S,γ

V β,Z Z S,γ
 (4.12)
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distribution f(y) by successively sampling from an arbitrary proposal distribution q(y|y*) and 

imposing  a random rejection step at each transition.  To simulate samples y(1),…, y(k) from 

f(y), MH entails first simulating a candidate value yC from q(y|y(j)).  Next, it takes y(j+1)=yC  

with probability 

and set y(j+1)=y(j) otherwise.  Here we note that f(y) need only be known up to a constant, 

which makes the algorithm convenient when sampling from non-standard target distributions 

such as what we have here.  Implementation of MH and other issues related to MCMC are 

well-developed in the literature (for example, Gilks et al., 1996; Chib and Greenberg, 1995; 

Casella and George, 1992; and Robert and Casella, 1999). 

An important decision in implementing the MH algorithm is choosing a candidate-

generating transition density q(y|y(j)).  We used both the Gaussian random walk Metropolis 

and Langevin-Hastings algorithms, as described below.  

4.4.3    Gaussian Random Walk Metropolis   

We updated the regression and covariance parameters ,   and γ α, β  element-wise 

using Gaussian random walk Metropolis.  In this algorithm, the candidate generating density 

q(y|y(j)) is a normal distribution with mean equal to the current state, y(j) and a user-specified 

covariance h>0, so that ( )( ) ,C jy N y h∼ .  An equivalent formulation is to generate a random 

increment r, where ( )( ) 0,P r N h=  and take ( )C jy y w= + , so that the process moves (walks) 

( ) ( ) ( )
( ) ( )

( )
( )

( ) ( )

 |
, min 1,

 |

C j C
j C

j C j

f y q y y
y y

f y q y y
α

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

 (4.13)
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from  y(j) by a random distance w.  Note that because the distribution of w is symmetric 

( )( ) ( )P w P w= − , then  ( ) ( )( ) ( )| |j C C jq y y q y y=  and the acceptance probability in Eq. 4.13 

simplifies to  

  

For example, to update θS at the jth iteration, we generate w as described above then 

compute  ( )jC
S S wθ θ= + .  We accept this candidate value with probability  

 

 

 

 

 

 The updates for all elements of ,   and γ α, β  follow similarly, tuning h for each 

element to allow acceptance rates in the range of 0.25-0.60. 

4.4.4    The Langevin-Hastings Algorithm 

For updating the spatial random effects S and Z, we employed the Langevin-Hastings 

(LH) algorithm as implemented in Christensen et al. (2000) and Christensen and 

Waagepetersen (2002).  In this method, rather than be centered at the current state, the 
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proposal center is adjusted according to the information about where the target density is 

likely to be greater.   

 Let Σ be the covariance of (S, Z) as defined in Eq. 2.2, and let Σ1/2 be the square root 

so that ( )1/ 2 1/ 2 T
=Σ Σ Σ .  We take (S, Z) = 1/ 2 ,Σ Γ  where Γ follows a (n + n1)-dimensional 

standard multivariate Gaussian distribution.  Recall that we have the two-part observed 

vector (U, V), where  ~ Bernoulli( )i iU A  and ~  TruncPoisson( )i iV B , with conditional 

means Pr[ 1| ( ), ]i i iA U S x= = α  and  * [ | ( ), ]
1 i

i
i i iB

BB V Z x
e−= = Ε

−
β .  We employ canonical 

link functions logit( )  ( ) ( )T
i S i iA x S x= +d α  and  log( )  ( ) ( )T

i Z i iB x Z x= +d β .  Let 

denote the gradient of the log target density, where  h’c and g’c are the partial derivatives of 

the canonical functions for the binomial and poisson distributions, respectively, and h’ and 

g’ are partial derivatives of the actual link functions we used for the application.  Since we 

used canonical links in both cases, ( )
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 For the truncated Poisson GLMM proposed here,  Christensen et al. (2000) has 

shown that the LH algorithm is not geometrically ergodic because ( )γ∇  increases very 

fast when γ →∞ in some directions.  Using a truncated gradient 

  

where 0 H< < ∞ is a truncation constant results in a geometrically ergodic LH algorithm for 

the spatial GLMMs.  The binomial part of the gradient does not need to be truncated because 

the mean (Ai) is bounded. 

In the LH update the proposal distribution is a multivariate normal distribution with 

mean vector ( ) ( )
2

trunchξ γ γ γ= + ∇  and covariance matrix hI, h > 0, and the acceptance 

probability is  

The main advantage of using LH is that it simultaneously updates the entire vector of 

random effects based on gradient information and can be more efficient than the fixed-scan 

algorithm we use in updating the regression and covariance parameters.  We used this 

algorithm to update the random effects (S, Z).   
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In implementing the LH algorithm we encountered problems with mixing, where the 

proposed random effects vectors had very low acceptance rates.  Roberts and Rosenthal 

(2001) determined that the LH algorithm is sensitive to inhomogeneity of the components; it 

loses efficiency when components have different variances.   Christensen et al. (2006) 

showed that this can arise in spatial GLMMs because the variability of individual 

components of the target density of interest ( )f s y  can vary depending on the observation 

at each location.  For instance, for Poisson observations with a log link they showed that 

large observations tend to be more informative about their mean than small ones are, so that 

generally the variance of |i iS y  will be smaller in locations with relatively higher counts.  

Conversely, the variance of |i iS y  will generally be higher in locations with smaller counts.  

Therefore, locations with higher counts (smaller variance) will tend to reject more proposals, 

while moves will generally be smaller than optimal for components with large variance 

(lower counts).  Overall, total mixing of S will be slower than if variances were equal.  In the 

binomial case, the variance increases when the observed value approaches 0 or mi, the 

number of trials at location xi.  Our application is binary, so the variance for |i iS y  is 

uniformly high for all locations.  

To increase the efficiency of mixing in the presence of inhomogeneity as well as 

correlated components, Christensen et al. (2006) proposed transforming the residual vector 

into a posteriori uncorrelated components with homogeneous variance.    The covariance 

matrix for |S y  is approximately ( )( ) 11 ˆ
−−= + ΛΣ Σ s where ( )ˆΛ s  is a diagonal matrix with 

entries ( ) ( )22 log | , 1, , ,i i is f y s i n−∂ ∂ = …  and ŝ  is a typical value of S, such as the mode of 
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( )|s f s y  or the mode of ( )s f y | s .  The authors suggest updating S  instead of S  in 

1 2=S Σ S  because it has approximately uncorrelated components with homogeneous 

variance.  In practice, it is shown that in the case of canonical links,  ( ) iii
s yΛ =  is a good 

approximation in the Poisson case, and ( ) ( )1i i iii
s y y mΛ = −  for the binomial case.  In 

updating the random effects ( ),S Z  in our two-part application, we use the suggested 

approximation ( ) iii
z yΛ =  for updating Z in all locations with positive counts, and 

( ) 0 
ii

sΛ = for all locations for updating S. 

4.5  Computing 

The sampling algorithms were implemented using R (Ihaka and Gentleman, 1996), a 

free software environment for statistical computing and graphics (www.r-project.org).  We 

used the computing facilities of the Pennsylvania State University High Performance 

Computing Group (HPC).  Specifically, we used Lion-XJ, a 144-node PC computational 

cluster.  Each node has 32 gigabytes of memory and two 3.0 GHz quad-core Intel Xeon 

(Woodcrest, E3450) processors.  For the simulated data example consisting of 400 sample 

locations, it takes about 60 hours to complete 100,000 scans.  In this study we generally used 

this number of samples to explore the properties of the posterior distribution.  We expect that 

the computing time could be significantly reduced by using programming languages more 

suitable for numerical computations or by employing programming techniques that will 

utilize the full parallel computing capabilities of a system such as this.  The computer code is 

archived at www.stat.psu.edu/~jlr/pub/Recta/ along with the results presented in Chapter 5.
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Chapter 5 
 

An Application to Simulated Data  

Results from the application of the proposed model on simulated data are 

presented in this chapter.  In applying the two-part model approach, we employed four 

covariance structures.  The first is the two-stage full (TSF) covariance model described in 

Section 3.2, with dependence among random effects for counts (Z), dependence among 

random effects for the binaries (S), and a cross-correlation among Z and S.  The second is 

a simpler covariance with dependence among Z but independence among S, and cross-

correlation among Z and S, henceforth the two stage independent binary (TSIB) model. 

The third takes the TSF but removes the cross-correlation among Z and S, which we call 

the two-stage no correlation (TSNC) model.  The fourth covariance structure we studied 

assumes dependence among Z, independence among S, and no cross-correlation between 

Z and S, henceforth the two stage independent binary, no cross-correlation (TSIBNC) 

model. 

5.1  Description of Simulation 

A two-part response in 2601 (51×51 grid) equally spaced locations xi was 

generated over the unit square. In each location, the two-part response (Ui, Vi) was 

simulated following the model described in Section 1.3: Ui|S(xi) ~ Bernoulli(Ai) and 

Vi|Z(xi)  ~ Truncated Poisson(Bi), where   
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Conditionally on the S(x) and Z(x), the (Ui, Vi) are independent, and the S(xi) and 

Z(xi) are stationary zero-mean processes with covariances following the exponential 

covariance function ( )2( ) expij ijC h hσ θ= − , where hij is the distance between locations.  

The cross-covariance function is constructed following Oliver (2003) as we described in 

Section 2.2, where SZ SZ S ZL LρΣ =  and and S ZL L are the respective Cholesky 

factorization matrices such that  and T T
S S S Z Z ZL L L LΣ = Σ =  and ρSZ  is the correlation 

between S and Z at the same location  (i.e., ( ) ( )( ), ,  1, 2,...i iS x Z x iρ =  ).  The 

explanatory variable d(xi) is a function of location along the horizontal axis, 

( ) ( )2 0.01 ,i i id x x W= +  Wi ~ N(0,1).  In all computations, d(x) was centered and 

distances were scaled.   

The true regression parameter values are (α0, α1) = (2, 5) and (β0, β1) = (1, 3) 

and the covariance parameters are (σ2, θS, θZ, ρSZ) = (1, 10, 5, 0.75).  The regression 

parameters were chosen to give a substantial proportion of zeros in the sample, yet induce 

a clear spatial trend in mean counts.  For instance, β1=3 means that under a constant 

signal z0, the expected count (conditional on at least 1 count) increases from 1 to about 20 

from the left side of the field to the opposite end. 

The chosen covariance parameters induced moderate spatial correlation among 

the S and among the Z, as well as between S and Z.  For instance, at  θS =10 the 

correlation between neighboring S signals goes down to about 0.15 at a scaled distance of 

( ) ( ) ( )
( ) ( ) ( )

0 1

0 1

logit

 log
i i i

i i i

A d x S x

B d x Z x

α α
β β

= + +

= + +
 (5.1)
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about 0.2, so that S signals are essentially uncorrelated at distances greater than one-fifth 

of the field.  The correlation between S and Z at the same location is ρSZ=0.75, and 

thereafter decays exponentially with distance. 

Figure 5.1 shows the simulated S and Z signals, probability of incidence ( )( )E U , 

and expected counts ( )( )E V  based on the S and Z simulated values and regression model.  

Both sets of random effects exhibit some spatial persistence, although the Z signals are 

smoother because of our choice of parameters (θS =10 and θZ = 5).  There is also evident 

cross-correlation between them as imposed by our choice of ρSZ=0.75.  Figure 5.2 shows 

the simulated realization of the semicontinuous variable Y based on the expected values 

of U and V.  Figure 5.3 is the same plot showing only the values observed at 400 sample 

locations.  There were 127 locations with zero counts, shown as × in the plot. 

As part of an initial exploratory analysis of the data we estimated the regression 

parameters using a generalized linear model ( )g E =⎡ ⎤⎣ ⎦Y Xβ  and the appropriate link 

function ( )g ⋅ , assuming incorrectly that ( ) ( )0 and 0 for all i iS x Z x x= = .  Using all 

sample points (including 0s) and a log link, the estimates (and standard errors) 

are ( )0
ˆ 1.09 0.034  β = ( )1̂and 1.60 0.056β = .  Using only the positive observations, the 

estimates are ( )0
ˆ 1.48 0.036  β = ( )1̂and 0.95 0.064β = .  For the incidence model (0 vs 1) 

with a logit link, the estimates are ( )0ˆ 2.23 0.289  α = ( )1ˆand 5.08 0.537α = . 
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Fig. 5.1: Simulated S and Z signals and expected values for incidence (U) and counts (V). 
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Fig. 5.2:   Semicontinuous data Y based on simulated values of incidence (U) and counts 
(V).  
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Fig. 5.3:  Observed semicontinuous data (n=400).  
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 To estimate the spatial correlation and cross-correlation among the S and Z 

random effects, we grouped the pairs of observations according to distance bins and 

computed sample correlation and cross-correlation coefficients.  Figure 5.4 plots the 

observed correlation coefficients as well as the theoretical value based on the specified 

covariance structure and parameters. 

We designed a sampling plan with the objective of estimating regression 

coefficients as well as covariance parameters.  It is important to ensure that locations are 

sampled throughout the field to capture mean trend, but equally important, if not more so,  

to ensure that there are enough sampling locations that are close together to capture the 

behavior of the covariance function close to the origin.   Our sampling plan allocates half 

of the 400 locations over a regular grid and the other half to 10 clusters of 20 locations 

each.  In this design, about 20% of the 79,800 pairs of locations have distances of 0.2 or 

less.  Most of the information regarding spatial correlation will be obtained from these 

pairs because the random effects are essentially uncorrelated at distances greater than 0.2.  

In this subset of location pairs, about 35% will be less than 0.1 apart.  From Figure 5.4 it 

is clear that much of the information about how fast the correlation structure decays 

comes from pairs of locations that are 0.1 or less apart.  If sampling locations were 

selected at random uniformly throughout the field (i.e., no clusters), the percentage of 

pairs of locations with distances of 0.2 or less will be about the same (20%) but only 

about 25% of these pairs will be less than 0.1 apart.        
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Fig. 5.4: Observed (°) correlation and cross-correlation coefficients computed from the 
sample data.  The theoretical values (⎯) are based on the specified covariance and cross-
covariance functions. 
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5.2   Implementation Details 

In this subsection we describe details of the implementation of the MCMC 

algorithms described in Section 4.4, as well as additional procedures used to summarize 

our findings.  We use the implementation of the TSF model as an example, but the 

procedures described here apply to all four models.   

In the MCMC implementation the initial values of α and β are their ordinary 

GLM estimates, i.e., assuming independent random effects.  Initial values of θ were 

sampled from their uniform proper priors, and S and Z started as independent samples 

from the standard normal distribution.  They can also be initially set as the residuals from 

the naïve GLM estimation.  We sampled the posterior distributions of α, β,  and θ using 

the Gaussian random walk Metropolis algorithm. We utilized log-uniform priors for θS 

and θZ where ( ) ( ) [ ]1, log 0,5π θ θ θ−∝ ∈ , a proper uniform prior for the correlation 

coefficient ( ) [ ]( )1, 1,1π ρ ρ∝ ∈ − , and flat improper priors for all regression parameters, 

where ( ) ( ) 41,  π ∝ ∈α,β α,β  . For the TSIB and TSIBNC models we used a proper 

uniform prior for σS, with ( ) ( ]1,  0,10π σ σ∝ ∈ .   

Posterior samples of S and Z were generated using the LH algorithm. We used 

truncation constant H=30 for ( )truncγ∇ .  In the LH update the proposal distribution for 

{S, Z} is a multivariate normal distribution with mean vector ( ) ( )
2

trunchξ γ γ γ= + ∇  and 

covariance matrix hI, where h = 0.4.   We encountered problems with mixing of the 
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distribution and implemented the reparameterization of the covariance parameters 

proposed by Christensen et al. (2006) which we summarize in Section 4.4.4.         

We describe the distribution of the samples from the MCMC procedure using 

posterior means and standard deviations.  We also present the estimated 95% highest 

posterior densities (HPD) of the parameters using the approximate procedure of Chen et 

al. (2000).  To ensure that our MCMC based estimates were reliable we used standard 

heuristics such as starting the chain from different initial values and comparing resulting 

estimates. We verified that the Monte Carlo standard errors (MCSE) for the posterior 

mean estimates computed by consistent batch means (Flegal et al., 2008; Jones et al., 

2006) are sufficiently small.  Non-overlapping batch means is one of several available 

methods to estimate the variance of the asymptotic distribution of a parameter of interest 

after generating samples from a Markov chain.  This method breaks up the output of n 

values into a blocks of equal size b (so that n=ab) and computes an estimate of the 

variance as 

 

where ,  1, ,jY j a= …  is the arithmetic mean in each block and Y is the mean of all n 

values.  For instance, for the TSF model (Table 5.1) the posterior mean of β1 is 0.99, with 

MCSE of 0.004.  Following the procedure described in Flegal et al. (2008), an 

asymptotically valid 95% confidence interval for the expected value of β1 is [0.98, 1.00].  

( )2
2

1

ˆ
1

a

j
j

b Y Y
a

σ
=

= −
− ∑  (5.2)
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The MCSEs for the parameters are presented in Table 5.1 and all similar summary tables 

in this chapter. 

At any iteration, given the current values ( )( ) ( ) ( ) ( ) ( ),k k k k kθ α ,β ,S ,Z , we can 

generate samples  of expected values at a set of unobserved locations x*, which we 

constructed as a grid of 1600 locations.  We first obtain samples S*=S(x*) and Z*= Z(x*) 

by noting that given the covariance parameters ( )kθ ,  ( )* * ( ) ( ) ( ), |k k kS ,Z S ,Z θ  is 

multivariate normal.  From Eq. 4.11 and 4.12, the distribution of 

( )( ) ( ) ( ) ( ) ( )| , ,k k k k kS ,Z U,V θ α ,β  is conditionally independent of ( )* *S ,Z and samples of 

( )( ) ( )k kS ,Z  are generated during the MCMC procedure.  Therefore, it is straightforward 

to generate samples of ( )* *S ,Z from the multivariate normal distribution 

( )* * ( ) ( ) ( )| ,k k kS ,Z S ,Z θ .  Expected values for U* and V* are then obtained using the 

specified link functions, the current values ( )( ) ( )k kα ,β , and the covariates ( )* andSd x  

( )*and .Zd x   At each iteration we also generated a sample realization of U*, V*, and the 

semicontinuous response Y*, where ( ) ( )
( ) ( )

0         if =0

if =1

U x
Y x

V x U x

∗

∗

∗ ∗

⎧⎪= ⎨
⎪⎩

 .   

We used the posterior means of ( )* * * * *,S ,Z U ,V ,Y for the prediction maps 

presented under each model. The program code and simulation results are archived at 

www.stat.psu.edu/~jlr/pub/Recta/. 
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5.3   Results from the TSF Covariance Model 

Figure 5.5 plots MCMC samples of the covariance and regression parameters, 

sampling every 100th iteration after discarding the first 20000 iterations.     

Table 5.1 gives the posterior mean and standard deviation of the samples, as well 

as estimated 95% HPD of the parameters.   The posterior means of the covariance and 

regression parameters do not reflect the corresponding true values used to generate the 

data set.   The degree of spatial dependence among the random effects in the simulated 

data was not captured in the posterior distribution, as covariance parameters were over-

estimated and the cross-correlation coefficient between S and Z was close to zero.   The 

95% HPD for the regression parameters in the incidence part of the model (α) include the 

true values ( )0 12, 5α α= = .  However, the posterior mean of the samples for β0 (1.67) is 

higher than the true value of 1 while the posterior mean for slope ( )1β for the positive 

counts (0.99) was underestimated; the true value is 3.  We note that these posterior means 

compare to the maximum likelihood estimates from a naive GLM (i.e., assuming 

incorrectly that ( ) 0 iZ x =  for all x  and V has a Poisson distribution).  Using only the 

subset of positive observations and assuming a Poisson distribution for the observed V 

where ( ) ( )log TE =⎡ ⎤⎣ ⎦V d X β , the MLE are ( )0
ˆ 1.48 0.036β =  ( )1̂and 0.95 0.064β = .  

However we note that, as expected, the naive GLM application is overly optimistic about 

the precision of the estimates.  The 95% confidence interval for 1,  for instance, is β  

( )0.82, 1.08 , compared to a 95% HPD ( )0.78, 1.18 from the TSF model.  We address the 
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apparent bias in the estimated regression coefficients for the abundance model in the 

latter part of this section. 

 

 

 

 

Fig. 5.5:  MCMC samples of all parameters in the TSF model. 
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Parameter True Value Posterior Mean  
(Standard Deviation) 

Monte Carlo 
Standard Error 

95% HPD 

θS 10.0 117.92 (23.18) 0.692 (76.79, 148.41) 
θZ 5.0 10.03 (2.11) 0.076 (6.30, 14.27) 
ρSZ 0.75 0.01 (0.09) 0.003 (-0.16, 0.21) 
α0 2.0 2.60 (0.34) 0.010 (1.95, 3.22) 
α1 5.0 5.93 (0.63) 0.018 (4.69, 7.07) 
β0 1.0 1.67 (0.06) 0.002 (1.56, 1.78) 
β1 3.0 0.99 (0.10) 0.004 (0.78,1.18) 

 

Figure 5.6 shows the posterior mean of the S and Z samples, as well as mean 

predicted incidence ( )( )E U  and positive counts ( )( )E V .  As expected from the 

posterior mean of 117.92 among the samples of θS, the S random effects demonstrated 

weak spatial dependence, but did reflect some areas with negative values found in the 

lower left-hand corner of the simulated data set (Figure 5.1), showing up as lighter shades 

in the same areas of Figure 5.6.   These sample-based estimates of the posteriors that 

show lighter areas appear to be consistent with the lighter areas in the map of Z random 

effects, probably due to the cross-correlation we have included in the covariance model.  

The map of mean predicted incidence ( )( )E U  shows mostly an increasing mean trend 

along the x-axis with few localized variations or spatial patterns corresponding to the 

map of S random effects. The samples of Z random effects exhibited some spatial 

dependence, as seen in the graph and also reflected in the mean of 10.03 among posterior 

samples of θZ (Table 5.1).  The graph of mean Z random effects also generally reflects the 

Table 5.1:  Posterior estimates, Monte Carlo standard errors, and highest posterior
densities (HPD) for parameter estimates in the simulated data set using the TSF model. 
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patterns seen in the simulated data set.  The mean predicted positive counts ( )( )E V  

therefore shows a similar increasing mean trend along the x-axis as well as localized 

variation due to the spatially varying Z random effects that was detected by the posterior 

distribution of this model.  The posterior distribution did not indicate a correlation 

between S and Z, with a posterior mean of 0.02 for the ρ, and a 95% HPD of (-0.16, 

0.21), which contains 0.  

At each iteration and prediction location, we generated a realization U and V, and 

hence the semicontinuous variable Y, where Y =0 when U=0 and Y =V  otherwise.  The 

posterior means of the Y and the 95% HPD for the predicted Y are mapped in Figure 5.7. 

This map is consistent with the simulated values in Figure 5.2 , generally increasing 

along the x-axis with some areas of higher abundance that reflect clusters of higher Z 

random effects at the top right and bottom right corners.   
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Fig. 5.6:   Predicted mean surface for simulated data using the TSF model. 
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The difficulty of capturing spatial dependence in a spatial logistic mixed model 

setting has been observed in previous work.  Liang et al. (2008) found that the correlation 

parameters were only weakly identified by the data, leading to poor MCMC convergence.  

They set the spatial correlation parameters to selected values and used them as tuning 

constants in order to study other parameters which were of greater interest, such as the 

regression coefficients.  These results are also consistent with the conclusions based on 

theory and simulation in Zhang (2004) who found, in the context of maximum likelihood 

inference for model-based geostatistics, that in model-based geostatistics, not all 

parameters in the Matérn class (which includes the exponential covariance function used 

here) can be estimated consistently even if data are observed in an increasing density over 

a fixed domain.    

 

Fig. 5.7:  Posterior mean and 95% HPD for the semicontinuous response Y using the TSF 
model.  The lower limit of the 95% HPD is <5 for 99% of all locations and is not mapped
here. 
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In the binary case where the only observation in a location xi is incidence, there is 

some indication on whether the spatial residual iS is positive or negative, but very little 

information regarding its magnitude.  If U(xi)=1, large positive proposal values for iS  for 

the Gaussian quantity  logit( )  ( ) ( )T
i S i iA x S x= +d α will be more likely to be accepted.  

Conversely, when U(xj)=0, large negative proposal values for iS  will be accepted more 

often.   

Earlier in this section we observed that the posterior mean of the samples for β0 

(1.67) is higher than the true value of 1 while the posterior mean for slope ( )1β for the 

positive counts (0.99) was underestimated; the true value is 3.  We also note that these 

posterior means are similar to estimates from a naive GLM application on the positive 

observations, where 0
ˆ 1.48β =  1̂and 0.95.β =  

The point estimate from the GLM is close to the marginal posterior mean for 1β  

due to the particular realization of Z in this data set.  Figure 5.8 (a) plots the actual 

simulated Z values in the data set against the d(xi), the value of the covariate.  The 

locations where Y>0 (equivalently, U=1) are plotted as solid circles (•) and × shows 

locations where we have a realization Zi in the data set but no observed Vi because the 

Ui=0; therefore we do not have a direct estimate of Zi in these locations.  This particular 

realization of our assumed Gaussian process shows a negative association with the lone 

covariate d(xi), particularly among Y>0.  A least squares estimate of the linear 

relationship between Zi and d(xi) in this subset of locations gives an intercept of -0.02 and 

slope of -1.58.   
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(a) 

 

(b) 

 

(c) 

 

Fig. 5.8:  Plots of the Zi random effects. (a) Simulated Zi vs. d(xi) with ordinary least 
squares regression line ( ) ( )0 0.02 1.58i i iE Z Y d x> = − − ; (b) Simulated Zi vs. 
corresponding mean posterior from TSF model; (c) Simulated and mean posterior  Zi vs. 
d(xi) 
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Figure 5.8 (b) plots the same simulated (actual) Z values in locations where 

abundance is observed (Y>0) against their corresponding posterior means under the TSF 

model.  Although both surfaces are centered on the same value (-0.40 vs. -0.36), the 

posterior mean values for Zi are smoother than the actual values, with no extreme high or 

low values.  Without these high and low values there is no apparent association between 

d(xi) and the posterior Zi as shown in Figure 5.8 (c). 

The posterior random effects are smoother than the actual Zi due to two related 

reasons.  First, the decreasing trend among the actual Zi along d(xi) has been attributed to 

the lone covariate in the model, which is d(xi).   Generally, the positive slope 1 3β =  was 

countered by the spurious negative trend in Z, resulting in a lower slope 1̂ 0.99β = . 

Secondly, this "attribution" is also a consequence of the covariance model we impose on 

the random effect Z.  The spatial dependence imposed on the random effects favors a 

smoother random effects surface, where Zi closer together in space are more alike, and 

large differences among adjacent Zi will be highly unlikely. 

Figure 5.9 graphically illustrates this confounding between the mean trend and 

random effect Z.  The left column shows the mean trend ( )( )1 3 id x+ and Zi in the 

simulated data set, where the mean trend increases with ( )id x  but the opposite is true for 

Zi , and the resulting ( ) ( )log 1 3i i iB d x Z= + +  are plotted as solid circles in the bottom 

graph, where Vi  ~ Truncated Poisson(Bi).  The right column shows the mean trend 

( )( )1.67 0.99 id x+ and Zi using the posterior means from the TSF model, showing a more 

modest mean trend and smoothly varying Zi, which provided good estimates of ( )log iB  
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plotted as hollow circles in the bottom graph.  We should note, however, that these 

graphs only illustrate the intuition behind this phenomenon in the linear part of the 

model, as we do not have closed form expressions of how individual values of random 

effects and their relationship to fixed effects can change the estimated coefficients in the 

spatial GLMM setting. 

 

 

Actual MeanTrend and Zi  Predicted Mean Trend and  Zi 

 
Fig. 5.9:  Mean trend and random effects in the simulated data set (left column) and from 
the posterior distributions in the TSF model (right column), and their sum log(Bi). 
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In the case of a CAR model with normally distributed observations, Reich et al. 

(2006) show that the posterior mean and variance of fixed effects can differ substantially 

between a non-spatial regression approach and after accounting for spatial correlation.  In 

particular, they observe that as spatial correlation increases, "random effects are 

smoothed to zero and β''s posterior is similar to its posterior under the ordinary linear 

model."  In our case, the random effects for the abundance part were smoothed to zero 

because the trend was attributed to the covariate, resulting in spatial regression 

coefficients that are close to the naive GLM estimates.   

Based on these findings it is important to emphasize that the regression 

parameters must be interpreted conditionally on the random effects, rather than 

marginally.  The need to distinguish between conditional and marginal regression 

parameters, which does not arise in linear Gaussian models, is well known in the context 

of GLMMs for longitudinal data (see for example Diggle et al., 1994, Chapter 7), and, in 

this case, equally so for spatial GLMMs. 

To further demonstrate the confounding between random effects and regression 

parameters in the case of generalized linear mixed models, we confirm that we can 

recover the correct regression parameters if we apply the above MH algorithms to sample 

the covariance and regression parameters while fixing all S and Z random effects at their 

(known) simulated values.   Table 5.2 summarizes the posterior samples taken under this 

constraint.  All parameters were appropriately captured when the uncertainty from the S, 

Z random effects is removed.  Clearly this scenario has no practical utility; it is only 

intended to verify that the posterior distributions for the parameters in the fixed part of 
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the model are being sampled appropriately and to demonstrate the conditional 

interpretation of the regression parameters in light of random effects. 

 

 

Parameter True Value Posterior Mean  
(Standard Deviation) 

Monte Carlo 
Standard Error 

95% HPD 

θS 10.0 9.70 (0.75) 0.024 (8.36, 11.23) 
θZ 5.0 5.00 (0.43) 0.012 (4.23, 5.83) 
ρSZ 0.75 0.74 (0.03) 9 x 10-4 (0.70, 0.80) 
α0 2.0 2.08 (0.29) 0.010 (1.49, 2.59) 
α1 5.0 5.57 (0.54) 0.009 (4.64, 6.74) 
β0 1.0 0.97 (0.04) 0.001 (0.88,1.05) 
β1 3.0 3.06 (0.08) 0.003 (2.90,3.21) 

 

Figure 5.10 presents histograms of the posterior samples for the covariance and 

regression parameters. 

 

Table 5.2:  Posterior estimates, Monte Carlo standard errors, and HPD for parameter
estimates in the simulated data set when the (S, Z) are fixed at their simulated values, 
using the TSF model. 
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We also performed the same sampling algorithms with the covariance parameters 

fixed at their true values, i.e.  SZ10,  5,  and 0.75S Zθ θ ρ= = = .  The results are 

summarized in Table 5.3.  The resulting posterior means for the regression coefficients 

are not unlike those from the full TSF model in Table 5.1 for the same reasons as in the 

 

 

Fig. 5.10:  Distribution of posterior samples of all parameters for the simulated data set 
when using the TSF model and fixing (S, Z) at their simulated values. 
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TSF model.  By imposing a priori strong spatial dependence among the random effects, 

the collinearity between the actual values of the Z and the lone regressor d(x) will be 

reflected in the regression coefficient for d(x) and smoothed random effects.  

  

Parameter True Value Posterior Mean  
(Standard Deviation) 

Monte Carlo 
Standard Error 

95% HPD 

α0 2.0 2.49 (0.34) 0.011 (1.82, 3.15) 
α1 5.0 5.37 (0.63) 0.016 (4.12, 6.54) 
β0 1.0 1.55 (0.05) 0.001 (1.46,1.66) 
β1 3.0 1.05 (0.09) 0.002 (0.86,1.22) 

5.4 Results from the TSIB Model  

In this subsection we explore whether it is possible to indirectly establish spatial 

dependence among S through its correlation with Z, and what effect using a simpler 

covariance structure will have on the parameter estimates as well as prediction.  In TSIB, 

we employ a simpler covariance structure, simply setting S as a vector of independent 

normal random effects.  We keep all elements described in the preliminary model in 

Section 3.2 except for the exponential covariance structure for S.  Instead, we have 

Table 5.3:  Posterior estimates, Monte Carlo standard errors, and HPD for parameter
estimates in the simulated data set using the TSF model when the covariance parameters 
are fixed at their known values 

 

2
S

2
Z Z

cov( ( ), ( )) σ

cov( ( ), ( )) σ exp θ

i j n

i j i j

S x S x I

Z x Z x x x

=

⎡ ⎤= − −⎣ ⎦
 (5.3)
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for some 2 2σ 0,  σ 0 and θ 0.S Z Z> > >  We  constructed the cross-covariance function using 

the procedure of Oliver (2003) which we described in Section 2.3. In this formulation, 

,  T
SZ SZ S ZL LρΣ = where ρSZ  is the correlation between S and Z at the same location and  

 and S ZL L are the respective Cholesky factors from ,  and .T T
S S S Z Z ZL L L LΣ = Σ =    

We implemented MCMC using the procedures described in Section 5.2.        

Figure 5.11 has plots of the posterior samples of the covariance and regression 

parameters.  The covariance parameters, particularly θZ andρSZ, appear to be comparable 

to the corresponding MCMC samples obtained under the TSF model (Figure 5.5) in the 

previous section.  The sample values for the regression coefficients appear to be centered 

around values higher than their corresponding true values, except for β1 samples, which 

has a posterior mean that is lower than its true value (Table 5.4).   

 

 

Parameter True Value Posterior Mean  
(Standard Deviation) 

Monte Carlo 
Standard Error 

95% HPD 

σS 1.0 5.08 (1.08) 0.176 (3.12, 6.88) 
θZ

 5.0 17.98 (5.23) 0.496 (7.49, 27.38) 
ρSZ 0.75 -0.02 (0.10) 0.007 (-0.20, 0.16) 
α0 2.0 6.43 (1.22) 0.169 (4.00, 8.65) 
α1 5.0 15.13 (2.86) 0.430 (9.71, 20.27) 
β0 1.0 1.62 (0.06) 0.004 (1.51, 1.74) 
β1 3.0 1.03 (0.10) 0.007 (0.84, 1.24) 

Table 5.4:  Posterior estimates, Monte Carlo standard errors, and HPD for parameter 
estimates in the simulated data using the TSIB model. 

 



76 

 

Figure 5.12 shows the predicted surfaces for both sets of spatial random effects, 

as well as mean incidence ( )( )E U  and mean positive ( )( )E V  counts.   By construction, 

the S random effects are uncorrelated, and this is reflected in the apparent lack of spatial 

dependence or clustering in the predicted surface.  Table 5.4  also shows no correlation 

between S and Z, so that the posterior distribution was not able to draw on any correlation 

between the two Gaussian processes to approximate the spatial structure of the S based on 

the observed spatial dependence among the Z.  The map of mean incidence ( )( )E U is 

then mostly an increasing function of distance from the origin of the X-axis.   

The Z random effects exhibited weak spatial dependence, showing some of the 

patterns that exist in the simulated data.  These patterns carry over to the predicted 

positive ( )( )E V count surface map, which reflects the same patterns as the simulated 

data set in Figure 5.1.   

Figure 5.13 maps the posterior mean and HPD of the expected value of the 

semicontinuous variable Y, as we did in Figure 5.7 for the TSF model. This map is 

consistent with the simulated values in Figure 5.2 , generally increasing along the x-axis 

with some areas of higher abundance that reflect clusters of higher Z random effects at 

the top right and bottom right corners.    
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Fig. 5.11:  MCMC samples of all parameters in the TSIB model. 
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We simplified the covariance structure such that we no longer attempt to capture 

the spatial dependence among the S random effects.  This also simplified the cross-

covariance between S and Z, although we purposely kept the correlation between the two 

sets of random effects to find out if the spatial structure captured among the Z can induce 

a similar spatial structure in the S process.  We had hoped that the Zs would essentially 

 

Fig. 5.12:  Predicted mean surface for simulated data using the TSIB model.  
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rein in the S random effects by virtue of the correlation between these two processes. 

Unfortunately, it appears that the apparent lack of spatial structure among the S random 

effects cannot be overcome by the observed spatial dependence in a related process.   

 

 

 

Fig. 5.13:  Posterior mean and 95% HPD for the semicontinuous response Y using the 
TSIB model. 
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5.5  Results Using the TSNC Model  

The TSNC model assumes spatially dependent covariance functions for each set 

of random effects but removes the cross-correlation between these sets.  This means we 

kept all elements of the TSF model but set ρSZ = 0.  We implemented MCMC using the 

algorithms described in Section 4.4 , using the same priors as the TSF model as detailed 

in Section 5.2. 

Figure 5.14 plots the posterior samples for all parameters and Table 5.5 

summarizes the sample values from the posterior distribution of the TSNC model. The 

posterior samples of the covariance parameters appear to be comparable to those from the 

TSF model.  This is not surprising because the HPD for ρSZ in the TSF model contains 0, 

while we fixed it at 0 in the TSNC model.  The posterior samples for regression 

coefficients in the abundance (β) part of the model are also quite similar to those in the 

TSF, for the same reason.  The 95% HPD for the regression coefficients in the incidence 

part contain the true values, α0 =2 and α1 = 5.   

 

Parameter True Value Posterior Mean  
(Standard Deviation) 

Monte Carlo 
Standard Error 

95% HPD 

θS 10.0 140.85 (17.30) 0.513 (94.83, 148.41) 
θZ

 5.0 10.27 (2.31) 0.060 (6.34, 15.01) 
α0 2.0 2.60 (0.33) 0.011 (1.94, 3.22) 
α1 5.0 5.91 (0.61) 0.018 (4.71, 7.05) 
β0 1.0 1.67 (0.06) 0.002 (1.56, 1.79) 
β1 3.0 0.98 (0.11) 0.003 (0.78, 1.19) 

Table 5.5:  Posterior estimates, Monte Carlo standard errors, and HPD for parameter
estimates in the simulated data using the TSNC model. 
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Figure 5.15 maps the predicted surfaces for both sets of spatial random effects, as 

well as mean incidence ( )( )E U  and mean positive ( )( )E V  counts, and Figure 5.16 maps 

the posterior mean and upper limit of the HPD of the semicontinuous variable Y.  These 

maps are very similar to the corresponding maps in the TSF model, as we have seen that 

 

 

Fig. 5.14:  MCMC samples of covariance and regression parameters under the TSNC
model. 
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the posterior distribution under the TSF model indicated absence of spatial dependence 

among the S random effects as well as absence of cross-correlation between the S and Z. 

 

 

 

 

 

Fig. 5.15:  Predicted mean surface for simulated data using the TSNC model. 
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Fig. 5.16:   Posterior mean and 95% HPD for the semicontinuous response Y using the 
TSNC model. 
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5.6  Results Using the TSIBNC Model 

In this subsection we simplify the covariance structure further by assuming 

independence between the two spatial stochastic processes, essentially modeling the 

processes of incidence and abundance separately.  This is analogous to the approach of 

Ver Hoef and Jansen (2007) who assume Gaussian Markov random field models for the 

two processes on a lattice where we assume Gaussian process models for the two 

processes on a continuous spatial domain.  For the TSIBNC model we employ the same 

covariance structures in Eq. 5.3, simply setting S as a vector of independent normal 

random effects and an exponential covariance structure for Z.  However, we remove the 

cross-covariance between the two variables and set ρSZ =0.  We implemented MCMC 

using the algorithms described in Section 4.4. and additional details in Section 5.2.   

Figure 5.17  shows posterior samples of the covariance and regression parameters, 

and the posterior distributions are summarized in Table 5.6.  The variance and regression 

parameters for the incidence part (σS, α0, α1) are very similar between the TSIB 

(Figure 5.11) and TSIBNC (Figure 5.17) because the S random effects were assumed to 

be independent in both models.  Likewise the posterior samples of regression parameters 

for abundance (β) for these two models are also very similar.  This is not surprising since 

the posterior sample values for ρSZ, the correlation between the two sets of random 

effects, was effectively zero in the reduced covariance model in TSIB.  This means that 

the posterior distribution essentially already had two independent processes with separate 

covariances.   The only difference is that the spatial dependence among the Z random 

effects is now better captured in the posterior distribution of this model.  This is because 
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the Z random effects are now just the "residual effects" in the abundance part of the data 

and are no longer affected by the lack of spatial dependence among the S random effects 

in the incidence part of the model.   It is now apparent that when we impose correlation 

between the apparently independent process S and the spatially dependent Z, the result is 

a dilution in the correlation among the Z's rather than being able to rein in the S random 

effects into a similar spatial structure.  

 

Parameter True Value Posterior Mean  
(Standard Deviation) 

Monte Carlo 
Standard Error 

95% HPD 

σS 1.0 6.04 (0.22) 0.009 (5.60, 6.46) 
θZ

 5.0 10.15 (2.25) 0.080 (6.53,  15.01) 
α0 2.0 7.36 (0.50) 0.028 (6.42, 8.37) 
α1 5.0 15.50 (1.00) 0.077 (13.41, 17.36) 
β0 1.0 1.67 (0.06) 0.002 (1.56, 1.79) 
β1 3.0 0.99 (0.10) 0.004 (0.78, 1.18) 

  

 Figure 5.18 shows the predicted surfaces for both sets of spatial random effects, 

as well as mean incidence ( )( )E U  and mean positive ( )( )E V  counts.   By construction, 

the S random effects are uncorrelated, and this is reflected in the absence of any spatial 

dependence or clustering in the predicted surface.  The map of mean incidence ( )( )E U is 

then mostly an increasing function of distance from the origin of the X-axis.   

 

Table 5.6:  Posterior estimates, Monte Carlo standard errors, and HPD for parameter 
estimates in the simulated data using the TSIBNC model. 
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Figure 5.19 maps the posterior mean and 95% HPD of predicted values of the 

semicontinuous variable Y, as we did in Figures 5.7 , 5.13 and 5.16 for the other 

covariance models. This and the earlier maps are consistent with the simulated values in 

Figure 5.2, generally increasing along the x-axis with some areas of higher abundance 

that reflect clusters of higher Z random effects at the top right and bottom right corners.   

 

 

 

  
Fig. 5.17:  MCMC samples of covariance and regression parameters under the TSIBNC
model. 
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Fig. 5.18:  Predicted mean surface for simulated data using the TSIBNC model . 
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5.7 Discussion 

In this chapter we applied the two-part model presented in Chapter 3 on a 

simulated data set.  We designed a sampling plan to estimate regression coefficients as 

 

 

Fig. 5.19:  Posterior mean and 95% HPD for the semicontinuous response Y using the 
TSIBNC model.   
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well as covariance parameters by ensuring that there are sample locations scattered 

throughout the field to capture mean trend and, at the same time, enough closely-spaced 

locations to capture the behavior of the covariance function close to the origin.  The 

allocation of these samples may be modified depending on whether the study is intended 

more to establish overall trend or spatial patterns.  

We used a Bayesian approach implemented via MCMC to obtain samples of the 

regression coefficients (α and β) as well as spatial random effects (S and Z) for the 

incidence and abundance part of the model, respectively.  We generated maps of 

prediction surfaces for the incidence (U) and abundance (V) parts of the model and 

combined these into a prediction map of the semicontinuous variable. We also obtained 

posterior samples of the covariance parameters under four covariance model 

specifications.  TSF is the full two stage model as it has the same structure used to 

simulate the random errors (S, Z), TSIB uses a two stage model with independent random 

effects in the binary part, TSNC is the same as TSF but without the cross-correlation 

between the two sets of random errors (S, Z), and TSIBNC also assumes no correlation 

between the two sets of random effects in addition to independent binary random effects.   

Table 5.7  summarizes the results from the four models. We employed different 

covariance models for the incidence part and its relation to the abundance part, with 

similar results for the parameters of the abundance part and some differences in the 

parameters for the incidence part across the four models.   

The covariance model for the abundance part was similar across the four 

approaches and the resulting estimates for  θZ, β0, and β1  are comparable across models. 

We found that the spatial dependence among Z random effects is captured in varying 



90 

 

degrees in these models.  In particular, the HPDs for θZ  in the TSF, TSNC, and TSIBNC 

are comparable and narrower under these models compared to TSIB.  In the TSIB model, 

allowing S random effects to vary independently while at the same time correlating them 

with Z appears to cause instability in capturing the spatial association among the Z 

random effects, as shown by the wider HPD of (7.49, 27.38) for θZ
..  When a correlation 

structure is imposed on the S (as in the TSF) or the cross correlation to the apparently 

unstructured S was removed (as in TSNC and TSIBNC), the posterior distribution more 

effectively assessed the spatial structure among the Z random effects.   

 

95% HPDa  
Parameter 

 
True 
Value TSF Model TSIB Model TSNC Model TSIBNC Model 

σS 1.0 -- (3.12, 6.88) -- (5.60, 6.46) 
θS 10.0 (76.8, 148.4) -- (94.8, 148.4) -- 
θZ 5.0 (6.30, 14.27) (7.49, 27.38) (6.34, 15.01) (6.53,  15.01) 
ρSZ 0.75 (-0.16, 0.21) (-0.20, 0.16) -- -- 
α0 2.0 (1.95, 3.22) (4.00, 8.65) (1.94, 3.22) (6.42, 8.37) 
α1 5.0 (4.69, 7.07) (9.71, 20.27) (4.71, 7.05) (13.41, 17.36) 
β0 1.0 (1.56, 1.78) (1.51, 1.74) (1.56, 1.79) (1.56, 1.79) 
β1 3.0 (0.78,1.18) (0.84, 1.24) (0.78, 1.19) (0.78, 1.18) 

a The HPDs for the parameters in each column are generated under different model 
assumptions and are not directly comparable.  In particular, the regression parameters for 
the logit part of the model (α0, α1) should be interpreted conditionally on their respective 
random effects, which vary between the different models. 

 

 

Table 5.7:  Summary of HPD of MCMC samples for the different parameters under the
four models for the simulated data. 
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It was difficult for the distribution to capture S random effects because the binary 

outcome (presence vs. absence) provided very little information regarding its magnitude.  

However, some spatial structure in the S random effects can be gleaned by using the TSF 

or TSNC model because it incorporates a correlation among the S, as well as cross-

correlation to a spatially dependent Z in the case of TSF.  We also examined the 

performance of the two-stage model using less structured covariances, assuming 

independence among S random effects in the TSIB and TSIBNC models.  Unfortunately, 

allowing the S random effects to vary independently resulted in considerable over-

estimation of the regression coefficients for incidence (α0, α1).  In modelling a binary 

random field by clipping a Gaussian random field, de Oliveira (2000) observed that "the 

inference about the binary map depends heavily on the correlation structure of the 

underlying Gaussian random field."  By varying our covariance and cross-covariance 

models, we effectively changed the posterior distribution of the spatial random effects for 

the binary regression. We observe that when the correlation among the S was removed 

(as in the TSIB and TSIBNC models), marginal posterior means of the regression 

parameters were considerably different compared to those under the TSF and TSNC.   

  For the incidence part of the model, the marginal posterior means from both the 

TSF and TSNC models were closest to the true values and the 95% HPD for the sample α 

for these two models contain the true values used to generate the observations.  However, 

this comes with the caveat that in the case of generalized linear mixed models, the 

regression parameters have a conditional rather than a marginal interpretation.  In the 

case of these four covariance models, each model generates a different set of random 

effects, and the regression parameters are sampled conditional on each set of random 
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effects.   Therefore, the marginal posterior means are not necessarily comparable, and 

posterior means that are closest to the known parameters does not by itself make this 

model the best performer.  Paraphrasing Diggle et al. (1998), " ( ) ( ) and  i iE U x S x⎡ ⎤⎣ ⎦  

( )iE U x⎡ ⎤⎣ ⎦ differ in their structural dependence on the explanatory variables ( )ixd , so the 

interpretation of α requires care.  Only in the case where ( )i iU S x is Gaussian and the 

link function is the identity can α be treated as the regression parameter for the marginal 

regression function [ ]iE U ."  

All four models produced similar prediction maps with features that are consistent 

with the simulated data.  For probability of incidence ( )E U  in Figures 5.6, 5.12, 5.15 and 

Figure 5.18, the predictive maps generally followed a similar increasing trend from the 

left to the right side of the field, but the prediction for TSF and TSNC are smoother than 

those from models TSIB and TSIBNC.  The difference is mainly due to smoothness of 

the random effects S associated with the incidence model, which are assumed to be 

independent in the TSIB and TSIBNC models, but have a dependence structure in TSF 

and TSNC.  Although the posterior distributions for the TSF and TSNC do not capture 

the strong dependence that we used to simulate the data, they appear to have captured 

enough dependence to smooth the posterior values. On the other hand, when these 

random effects are allowed to vary independently in the TSIB and TSIBNC models, the 

random effects behaved more like "residuals" that compensated for presence or absence 

in each location by taking on large positive or large negative values, respectively.    
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Predicted abundance ( )E V  maps were generally similar across the models 

because the marginal posterior distributions for the regression and covariance parameters 

are similar.  And, because much of the patterns in the mean predicted values ( )E Y  are 

derived from ( )E V , not surprisingly the map of mean predicted values of  Y are also 

similar across models.  Figure 5.20 plots the posterior mean predicted value of the 

semicontinuous variable Y in each location (i.e., the values mapped in Figures 5.7, 5.13,  

5.16, and 5.19) against the actual simulated value for that location (Figure 5.2).   The 

mean predicted values were consistent with the simulated values in most cases.  The 95% 

HPD for the predicted values contained the actual observation 95% - 96% of the time.  

This predictive performance and HPD coverage is demonstrated in Figure 5.21 for a 

sample of values from the simulated data set. The actual simulated value of Y in 100 

previously unobserved locations (i.e., not included in the n=400 used in the estimation) is 

plotted, along with posterior mean predicted Y values and 95% HPDs generated under 

each model.  The values are ordered according to posterior mean predicted value, for ease 

of presentation.   For all the models, the prediction HPDs provide good coverage of the 

simulated values.  
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Fig. 5.20:  Scatterplot of actual simulated value of the semicontinuous variable Y against 
posterior mean predicted value under the four models.  
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Fig. 5.21: Posterior mean predicted value and 95% HPD for a sample of 100 unobserved
values of Y. 
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The upper limit of HPDs missed the actual values in a small percentage (4-5% 

overall) of the locations, most notably when the actual value is much higher than the 

predicted value of Y, as shown in Figure 5.21 for the sample from the full data set.  It is 

also helpful to see where these missed predictions are located.   Figure 5.22 plots the 

upper limit of the 95% HPD for predicted value of Y (i.e., the same values mapped in 

Figures 5.7, 5.13, 5.16, and 5.19) only for the locations where the actual value (shown in 

its entirety on the bottom map) was higher than the upper limit of the corresponding 

HPD.  It is evident that the predictions were missed mostly in the areas with very high 

observed counts, also called "hot spots".   This is clearly a consequence of the covariance 

structure we have imposed on the random effects, which then tends to oversmooth the 

predicted random effect surface.  

For each model, we computed a mean square error (MSE) of prediction for ( )E U    

by taking ( )( ) ( ) ( )( ) 2

ˆ
**

1 | , ,U
x

MSE E U x Data E U x S x
n π

∈

⎡ ⎤= −⎣ ⎦∑
xx

α   where   

( )ˆ |E U x Dataπ ⎡ ⎤⎣ ⎦  is the posterior mean of the probability of incidence given the 

incidence regression parameters and S random effect which we generated over all 

unobserved locations *x∈x , as previously described in Section 5.2.  We computed 

MSEV and MSEY similarly for ( ) ( )and .E V E Y  

These MSEs are summarized in Table 5.8.  The overall predictive performances 

of the models are comparable, although TSIB appears to be numerically inferior to TSF, 

TSNC and TSIBNC particularly with respect to predicting ( ) ( ) and E V E Y .  
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TSF TSIB 

  
TSNC TSIBNC 

  

Simulated Data 

 
Fig. 5.22: Locations where the upper limit of 95% HPD for predicted Y was lower than 
the actual simulated value. 
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 TSF Model TSIB Model TSNC Model TSIBNC Model 
MSEU 0.018 0.012 0.012 0.013 
MSEV 22.42 25.58 22.47 22.64 
MSEY 26.99 29.38 24.49 26.60 

 

Whether the objective is estimation or prediction, we recommend the TSF or 

TSNC models.  In this simulated data set, spatial dependence was only weakly identified 

by these models, particularly in the incidence part.  However, this appears to have been 

enough to be able to capture the regression parameters for the incidence part and to 

produce predicted incidence maps that are reasonably smooth, consistent with our a priori 

assumption of spatial dependence.  Both TSIBNC and TSIB produce posterior 

distributions for the parameters of the positive part of the model comparable to TSF and 

TSNC, but the latter models retain the mechanism to capture spatial dependence in both 

parts of the model.  Cross-correlation may be kept or removed depending on prior 

information or as a tool to perform sensitivity analysis, exploring any changes in the 

other marginal posteriors under different levels of cross-correlation.   

It can be said that TSIBNC can perform just as well as TSF or TSNC because it is 

more straightforward to assess spatial random effects solely from the abundance part in 

TSIBNC.  Assuming independence between the two sets of random effects also makes 

the model more parsimonious and has the added advantage of working with much smaller 

Table 5.8: Estimated mean square errors of prediction under each model for 
( ) ( ) ( ), and E U E V E Y .  
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covariance matrices, because we do not have to model S and Z jointly using their 

combined covariance matrices with cross-covariance.  However, in this research we are 

motivated by the presence of excessive zeros in spatial data, and modeling the incidence 

process carefully is central to our goals since the zero observations from the data arise 

from the incidence process. This means that the incidence part should perform well on its 

own because all the zero observations in the data arise from this part of the model.  Based 

on our study of this simulated data set, we find that the TSF and TSNC models enable a 

careful modeling of both the incidence and abundance parts, and therefore these are the 

models we would always use first before the simpler models.    

We end this chapter with additional comments about spatial random effects and 

the consequences of model choice.  In our simulated data set the Z random effects were 

negatively correlated with the lone covariate d(x).  This association was clearly just a 

chance occurrence; another realization may or may not have the same associations, or 

have different ones.  However, in exploring the posterior distributions, we condition on 

this single realization, and therefore these associations, whether by chance or by design, 

are real and can greatly affect our findings; in this case the regression coefficients for the 

abundance model differed substantially from the parameters we used to generate the data.    

In sampling the posterior distributions we assume that the Zs are random, but we 

are in fact trying to estimate the magnitude of this particular realization of the "random 

effect", using our belief about the process that generated it (in our case, a Gaussian 

stochastic process with a specified covariance).  In this context, Reich et al. (2006) 

suggest that these are implicit fixed effects, and the posterior mean and variance of the 
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regression coefficients can be affected when there is collinearity between the known 

covariates in the model and the spatial random effects.   

In real data sets, it is possible that random effects become surrogates for other 

covariates that are not included in the model.  The potential exists for confounding 

between the fixed effects in the model and the omitted variables that affect the posterior 

distributions through random effects.  In our two-part model, it is particularly important 

to consider covariates that may be overlooked because they only affect the abundance 

part of the model.  
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Chapter 6 
 

An Application to Ecology  

In this chapter we revisit the entomological study in which different life stages of 

Colorado potato beetle were counted weekly at a resolution of one meter-row.  We apply 

the same two-part approach as in the previous chapter, using the four models TSF, TSIB, 

TSNC, and TSIBNC.  

The data set considered here consists of large larvae count taken at week eight.    

There were 296 observations taken in a systematic sampling pattern in an 80-m square 

field.  Figure 6.1  plots categorized densities observed in the sampled locations.  The 296 

observations have 144 zeros and 152 positive counts (Blom and Fleischer, 2001; Blom et 

al., 2002). 

Each observation was transformed into a two-part response (Ui, Vi) and the same 

model as the first case study was fitted: Ui|S(xi) ~ Bernoulli(Ai) and Vi|Z(xi)  ~ Truncated 

Poisson(Bi).  Due to the location and orientation of the experimental plot, it is believed 

that the source of infestation (immigrating adults) would be the north side of the field.  

Therefore, d(xi) is taken as scaled and centered northing coordinate, the single 

explanatory variable in the simple mean functions of Eq. 5.1.    
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6.1  Results from the TSF Model  

We implemented MCMC using the algorithms described in Section 4.4 on the 

CPB data set, using the same independent priors as in Section 5.3    In generating 

posterior samples of S and Z following the LH algorithm described in 4.4.4, we used 

truncation constant H = 50 for ( )truncγ∇  and variance scale parameter h=0.40.   

 

Fig. 6.1:  Observed counts of CPB large larvae at Week 8 
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Figure 6.2 plots samples from the posterior distributions for the covariance and 

regression parameters at every 100th iteration after a sufficient burn-in period.   

 

 

 

 

Fig. 6.2:  MCMC samples of all parameters for the CPB data set under the TSF model. 
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The marginal posterior distributions for the covariance and regression parameters 

were reasonably symmetric (Figure 6.3), except for some skewness in θS and θZ.   

 

Table 6.1 summarizes the results from the MCMC sampling procedure under the 

TSF model.  The posterior mean for the θS samples is 70.81, showing weak spatial 

correlation.  For instance, at the smallest observed distance of 0.88 m, two S signals are 

correlated by about 0.48, but at a distance of 2 m, the correlation drops to 0.2, and to 

about 0.08 at 3 m.   The Z signals exhibit stronger spatial correlation, with a mean of 

20.27 among the MCMC samples of θZ.   At this value of θZ, at the smallest observed 

distance of 0.88 m, two Z signals are correlated by about 0.8; at a distance of 2 m, the 

 

Fig. 6.3:  Distribution of MCMC samples of covariance and regression parameters for the
CPB data set using  the TSF model 



105 

 

correlation drops to 0.6, and then to about 0.3 among locations that are 5 m apart.   The S 

and Z signals appear to be uncorrelated since the 95% highest posterior density (HPD) 

interval for the correlation is (-0.20, 0.34), which includes 0. 

Parameter Posterior Mean  
(Standard Deviation) 

Monte Carlo 
Standard Error 

95% HPD 

θS 70.81 (22.49) 1.024 (32.48,  114.03) 
θZ 20.27 (6.67) 0.191 (10.00,  33.56) 
ρSZ 0.07 (0.14) 0.006 (-0.20, 0.34) 
α0 0.06 (0.18) 0.005 (-0.31, 0.41) 
α1 3.07 (0.64) 0.017 (1.81, 4.29) 
β0 1.59 (0.07) 0.003 (1.44,  1.72) 
β1 1.11 (0.19) 0.006 (0.71, 1.46) 

  

Figure 6.4 maps the posterior mean of the S and Z samples, as well as mean 

predicted incidence ( )( )E U  and positive counts ( )( )E V .  As in the results from the 

simulated data set, the S random effects appeared to be independent except for some 

localized areas of large positive random effects.  The samples of Z random effects 

exhibited some spatial dependence shown as lighter or darker areas.  Consequently, the 

map of mean predicted incidence ( )( )E U  shows a generally increasing mean trend along 

the y-axis, and some localized variation where positive counts were observed in the 

sampled locations.  In these spots, the random effects are positive.  The mean predicted 

positive counts ( )( )E V  shows a similar increasing trend along the y-axis as well locally 

higher or lower means that are consistent with the patches of lighter (negative) or darker 

(positive)  Z random effects. 

Table 6.1:  Posterior estimates, Monte Carlo standard errors, and HPD for parameter 
estimates from the CPB data set under the TSF model. 
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The positive mean of the posterior samples for both slopes (α1, β1) are consistent 

with the expectation that locations further to the north (higher along the y-axis) have 

higher densities of large larvae because the source of infestation is just north of this field.  

For instance, given a constant S and taking 3.07 (from Table 6.1) as our estimate of α1, 

 

Fig. 6.4:  Predicted mean surface under the TSF model. 
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the odds of finding at least one large larva increases from 1 in the middle of the field to  

about e(0.5)(3.07) =4.6 to the north end of the field.   

It is possible that the spatial processes that affect incidence (the U’s) may be 

different from those that drive abundance (the V’s).  Blom and Fleischer (2001) found 

that the distribution of adults followed a mean trend, with higher densities observed 

closer to sources of immigrating adults.  However, they observed little or no spatial 

dependence.  This may mean that the adults, once they are in the field, have no 

preference for particular locations or conditions to lay their eggs.  Therefore, it may turn 

out that where the eggs (and therefore the larvae) are found will also exhibit no spatial 

correlation.  However, non-uniform conditions within the potato field may determine 

how many of these eggs will survive to become large larvae, which could explain why 

some spatial dependence can be observed among large larvae.  Thus, it may be that 

incidence and abundance are really two different processes with different covariance 

structures.  This can explain the apparent lack of correlation between the S and Z random 

effects, even in the same location.  However, based on our finding in Chapter 5 regarding 

the difficulty in capturing S random effects and their correlation with Z, it is possible that 

the spatial random effects for incidence and abundance of large larvae are correlated, 

although not detected in the model.  

Finally, we generated a realization U and V, and hence the semicontinuous 

variable Y, where Y =0 when U=0 and Y =V when U=1.  The posterior means of the Y and 

the 95% HPD for the predicted Y are mapped in Figure 6.5.  There is a clear increasing 

trend in the posterior mean as we move closer to the north edge of the field, although 

localized areas of higher or lower expected values are still evident.  Areas with higher 
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means have higher variability.  This is not surprising since the positive component of the 

two-part model is the truncated Poisson, which is characterized by an increase in variance 

with increasing mean.   

In addition to the mean, we can also map other functionals of interest.  In this 

case, we generated the 95% HPD of the predicted values of Y and map them in Figure 6.5 

as well.  This can be used to identify possible “hot spots” or areas that may need control 

measures.  We can also generate maps that show locations where predicted values exceed 

a known threshold. 

 

 

Fig. 6.5:  Posterior mean and upper limit of the 95% HPD for predicted CPB larvae per
meter row in the observed field under the TSF model.   The lower limit of the 95% HPD
is 0 for all locations and is not mapped here. 
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6.2  Results from the TSIB Model 

In this section we apply the two-part model on the same CPB data set, but this 

time model the covariance among random effects using the TSIB model, where we 

assume independence among the random effects in the binary part, as we did in Section 

5.4 for the simulated data set.   We employed the same priors as in the previous section.  

The ranges for the proper uniform priors for the covariance parameters (σS, ρSZ) are (0, 

10] × [-1, 1].  We used improper flat priors for the regression parameters α and β.  

Figure 6.6 shows the samples of covariance and regression parameters from the 

posterior distribution of the TSIB model.     

Table 6.2 summarizes the posterior samples under the TSIB model.  The posterior 

means for the covariance parameters that were retained in the model (θZ and ρSZ) were 

similar to those in the full covariance model (TSF), although the posterior mean and HPD 

for θZ was slightly higher in the TSIB model.  This is the same trend seen in the 

simulated data set (Section 5.4), where the correlation among the Z becomes less evident 

when the model includes a mechanism to correlate them to a spatially unstructured 

process (S).  The regression parameters were also similar, except for an increase in the 

magnitude of α1.  In this model the posterior mean for α1 is 6.86 compared to 1.90 in the 

TSF model, showing a steeper mean gradient for incidence in the TSIB.  However, these 

coefficients should be interpreted conditionally on the random effects in each model.  
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Fig. 6.6: MCMC samples of all parameters for the CPB data set under the TSIB model. 
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Parameter Posterior Mean  
(Standard Deviation) 

Monte Carlo 
Standard Error 

95% HPD 

σS 4.30 (0.89) 0.149 (2.61, 5.55) 
θZ 28.47 (10.24) 1.398 (10.00, 48.09)  
ρSZ -0.01 (0.14) 0.010 (-0.27, 0.26) 
α0 0.22 (0.36) 0.045 (-0.47, 0.91) 
α1 6.86 (1.50) 0.200 (4.05, 9.99) 
β0 1.60 (0.07) 0.006 (1.45, 1.73) 
β1 1.20 (0.20) 0.023 (0.80, 1.57) 

 

Figure 6.7 maps the posterior mean of the S and Z samples, as well as mean 

expected incidence ( )( )E U  and positive counts ( )( )E V .  With this covariance function, 

the S random effects are assumed to be independent, and this is reflected in the absence 

of spatial persistence in the map of S random effects.  In contrast, the posterior mean of 

the samples of Z random effects show spatial patterns similar to those in Figure 6.4 .    

The maps of expected incidence ( )( )E U  and abundance ( )( )E V  are generally 

increasing functions of proximity to the north edge of the field, as observed earlier.  

There are some localized areas of higher or lower abundance due to the spatial patterns 

seen among the Z random effects.  

Maps of the posterior mean and 95% HPD of the semicontinuous response are 

presented in Figure 6.8.  The patterns seen here are similar to those in Figure 6.5 

(corresponding to the TSF model).  There is a clear increasing trend in the expected mean 

towards the north edge of the field, and an increase in variability as well.     

Table 6.2:  Posterior estimates, Monte Carlo standard errors, and HPD for parameter
estimates from the CPB data set under the TSIB model. 
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Fig. 6.7:  Predicted mean surface under the TSIB model. 
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6.3  Results from the TSNC model  

The TSNC model assumes spatially dependent covariance functions for each set 

of random effects but removes cross-correlation by setting ρSZ = 0.   We used the same 

priors as the TSF model in the MCMC implementation.  

Figure 6.9 plots the posterior samples for all parameters and Table 6.3 

summarizes the sample values from the posterior distribution of the TSNC model.  The 

posterior distributions of the parameters for the abundance part appear to be unchanged 

relative to those in the TSF model in Section 6.1.  As in the application of TSNC to the 

simulated data, the correlation parameter ρSZ was essentially 0 in the TSF model, so the 

abundance part of the posterior model was being sampled independently from the 

incidence part.  We note that the posterior mean and HPD for covariance parameter θS is 

 

Fig. 6.8:  Posterior mean and upper limit of 95% HPD for predicted CPB larvae per meter 
row in the observed field under the TSIB model.   The lower limit of the 95% HPD is 0
for all locations and is not mapped here. 
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slightly lower in TSF [mean=69.14, HPD= (33.72, 118.39)] than in this TSNC model 

[mean=85.74, HPD= (43.78, 148.41)], which means that the spatial dependence among S 

random effects was slightly more pronounced when cross-correlation is allowed, such as 

in TSF.   

 

 

 

Fig. 6.9:  MCMC samples of all parameters for the CPB data set under the TSNC model.
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Parameter Posterior Mean  
(Standard Deviation) 

Monte Carlo 
Standard Error 

95% HPD 

θS 85.74 (34.94) 1.901 (43.78,  148.41) 
θZ 23.44 (8.18) 0.321 (9.84,  39.27) 
α0 0.07 (0.18) 0.006 (-0.24, 0.42) 
α1 3.03 (0.60) 0.022 (1.94, 4.23) 
β0 1.60 (0.07) 0.002 (1.47, 1.75) 
β1 1.09 (0.20) 0.006 (0.73, 1.50) 

 

Figure 6.10  maps the predicted surfaces for both sets of spatial random effects, as 

well as mean incidence ( )( )E U  and mean positive ( )( )E V  counts, and Figure 6.11 maps 

the posterior mean and upper limit of the HPD of the semicontinuous variable Y.  These 

maps are similar to the corresponding maps in the TSF model, although a visual 

comparison appears to indicate that even less spatial dependence in the S random effects 

in the TSNC model compared to TSF.  

 

Table 6.3:  Posterior estimates, Monte Carlo standard errors, and HPD for parameter
estimates from the CPB data set under the TSNC model. 
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Fig. 6.10:  Predicted mean surface under the TSNC model. 
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6.4  Results from the TSIBNC model 

In this section we apply the TSINBC model (as described in Section 5.5) to the 

CPB data set.   We employed the same priors as the TSIB model.   

Figure 6.12 plots posterior samples of the covariance and regression parameters, 

and the posterior distributions for TSIBNC are summarized in Table 6.4 . The posterior 

means for parameters in the abundance part of the model (θZ, β0, β1) are consistent with 

those from all three models previously applied.       

 

Fig. 6.11:  Posterior mean and upper limit of 95% HPD for predicted CPB larvae per
meter row in the observed field under the TSNC model.   The lower limit of the 95%
HPD is 0 for all locations and is not mapped here. 
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Parameter Posterior Mean  
(Standard Deviation) 

Monte Carlo 
Standard Error 

95% HPD 

σS 7.78 (0.64) 0.086 (6.58, 9.03) 
θZ 22.36 (7.56) 0.258 (9.76, 37.66) 
α0 0.42 (1.10) 0.186 (-1.08, 2.59) 
α1 12.22 (2.10) 0.295 (7.84, 15.71) 
β0 1.60 (0.08) 0.002 (1.44, 1.74) 
β1 1.10 (0.20) 0.007 (0.70, 1.46) 

 

 

 

  
Fig. 6.12:  MCMC samples of all parameters for the CPB data set under  the TSIBNC 
model. 

Table 6.4:  Posterior estimates, Monte Carlo standard errors, and HPD for parameter
estimates from the CPB data set under the TSIBNC model. 
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Figure 6.13 maps the posterior mean of the S and Z samples, as well as mean 

expected incidence ( )( )E U  and positive counts ( )( )E V .  With this covariance function, 

the S random effects are assumed to be independent and the cross-correlation between S 

and Z random effects was set to 0.  In addition to the absence of spatial persistence in the 

map of S random effects, the removal of a cross-covariance between the two processes 

also seems to have increased the variance among the S.  We note that the same trend was 

seen in applying this model to the simulated data.  In Table 6.4 the posterior mean for σS  

is 7.78 compared to a posterior mean of 4.30 in the TSIB model (Table 6.2).  The 

posterior mean of the samples of Z random effects show spatial patterns similar to those 

in Figure 6.4 and Figure 6.7.    The maps of expected incidence ( )( )E U  and abundance 

( )( )E V  are generally increasing functions of proximity to the north edge of the field, as 

observed earlier, with some localized patterns seen among the Z random effects.  

Figure 6.14 maps the posterior mean and 95% HPD of predicted values of the 

semicontinuous response, similar to those in Figures 6.5 ,  6.8 and 6.11 for the TSF, TSIB 

and TSNC models, respectively.      
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Fig. 6.13:  Predicted mean surface under the TSIBNC model. 
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6.5  Discussion  

In this chapter we applied the two-part approach to modeling counts of CPB large 

larvae that have more zeros than can be accounted for by single discrete distribution.   

Two approaches that have been used to model data over space and time that contain 

excessive zeros are the two-part model (also called hurdle model) and the ZIP. 

In this case the two-part approach is more appropriate than a ZIP model because it 

allows the modeling of the binary process separately from the count process.  In 

biological settings incidence can be studied separately from abundance and simultaneous 

 

Fig. 6.14:  Posterior mean and upper limit of 95% HPD for predicted CPB larvae per meter
row in the observed field under the TSIBNC model. The lower limit of the 95% HPD is 0 
for all locations and is not mapped here. 
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inference, such as prediction, is possible.  It is appropriate when there is little chance of 

missing any items in the counts (Ver Hoef and Jansen 2007), so that a zero count can be 

taken as true absence of the species or phenomenon being counted. 

We implemented the model in a geostatistical setting, assuming that the two 

processes arise from a bivariate stochastic process on a continuous spatial domain.  We 

were able to generate smooth prediction surfaces by interpolating between unobserved 

locations.   As in the application on simulated data (Chapter 5), we implemented the two-

part model approach using four covariance structures.  In all four covariance models, the 

posterior distributions for the parameters in the model for CPB abundance were 

comparable.   The spatial dependencies in the prediction surfaces were mainly derived 

from the abundance part of the model, and therefore these were similar across models as 

well.    The model for incidence detected only weak spatial dependence among the 

random effects and the random effects for the incidence and count parts do not appear to 

be correlated.  However, our experience with the simulated data example has been that 

"absence of evidence is not evidence of absence".  We have found that the random effects 

for the incidence part of the model are hard to quantify, and therefore it may be that in 

this case, there is undetected spatial persistence among these, and likewise that the 

process is correlated to the random effects from the abundance part of the model.   

Table 6.5 summarizes the results from the four models when applied to the CPB 

data.  The estimates of the parameters for the abundance part of the model (θZ, β0, and β1) 

were similar across the four covariance models, as it appears that the two-stage models 

captured the spatial dependencies as well as overall trend in this part of the model.  

However, as in the simulated data example, we observed that the HPD interval for the 
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covariance parameter θZ was wider in the TSIB model (10.00, 48.09) compared to the 

other models.   Again, this is probably due to an instability among the Z random effects 

when the model allows both correlation among the Z and cross-correlation to 

independent S.   

  

95% HPDa  
Parameter TSF Model TSIB Model TSNC Model TSIBNC Model 

σS -- (2.61, 5.55) -- (6.58, 9.03) 
θS (32.48,  114.03) -- (43.78, 148.41) -- 
θZ (10.00,  33.56) (10.00, 48.09)  (9.84, 39.27) (9.76, 37.66) 
ρSZ (-0.20, 0.34) (-0.27, 0.26) -- -- 
α0 (-0.31, 0.41) (-0.47, 0.91) (-0.24,0.42) (-1.08, 2.59) 
α1 (1.81, 4.29) (4.05, 9.99) (1.94, 4.23) (7.84, 15.71) 
β0 (1.44,  1.72) (1.45, 1.73) (1.47, 1.75) (1.44, 1.74) 
β1 (0.71, 1.46) (0.80, 1.57) (0.73, 1.50) (0.70, 1.46) 

a The HPDs for the parameters in each column are generated under different model 
assumptions and are not directly comparable.  In particular, the regression parameters for 
the logit part of the model (α0, α1) should be interpreted conditionally on their respective 
random effects, which vary between the different models. 

 

With regards to the incidence part of the model, we found wider HPD intervals 

for α0 when we reduce the spatial structure in the random effects for the incidence part.   

All the intervals include 0, but considerably wider under TSIB (-0.47, 0.91) and TSIBNC 

(-1.08, 2.59) compared to TSF (-0.31, 0.41) and TSNC (-0.24, 0.42). The posterior means 

and HPD intervals for α1 are also greater in magnitude and width in TSIB and TSIBNC.  

Although we note that these estimates are generally not comparable because these were 

obtained conditional on random effects that varied depending on the covariance model, it 

Table 6.5:  Summary of HPD of MCMC samples for the different parameters under the
four covariance models for the CPB data. 
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appears that, as in the simulated data example, the estimates are more precise in the TSF 

and TSNC models.   

The prediction maps for the semicontinuous variable Y generated under each 

model, shown in Figures 6.5 , 6.8, 6.11 and 6.14 had similar spatial features.  This is 

because these maps are mostly determined by the abundance part of the two-part model, 

and we have observed that the random effects and regression parameters for the 

abundance part of the model are similar across the four models.  However, with respect to 

expected incidence ( )E U , we note that predicted probability of incidence was smoother 

in the TSF and TSNC models (Figures 6.4 and 6.10) compared to the TSIB and TSIBNC 

models (Figures 6.7  and 6.13).  Some spatial dependence, at shorter distances, was 

captured among Z random effects in the incidence part of the TSF and TSNC models via 

the assumption of an exponential covariance structure, and this resulted in smoother 

prediction maps.  

Overall, we prefer the TSF and TSNC models over the TSIB and TSIBNC 

because both these models incorporate spatial dependence among random effects in both 

parts of the model.  In this data set, we would recommend keeping the TSNC model 

because it retains the mechanism to capture spatial dependence in the incidence part of 

the model, and in this application this was enough to generate smoother maps and 

potentially more precise estimates of the regression parameters.  The TSF model can be 

used even when the random effects vectors S and Z appear to be uncorrelated, because 

we can use the cross-correlation coefficient as a nuisance parameter to explore the effect 

of imposing cross-correlation on the posterior distributions.  Although we found that 
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spatial structure is more readily obtained from the abundance part, both parts of our two-

stage model are equally important for interpretability, because the binary part is the sole 

predictor for incidence.  For data with excessive zeros, it is particularly important that the 

binary model establish good estimates for predicting incidence, and this is where the TSF 

and TSNC performed better than the other two models. 
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Chapter 7 
 

Summary and Future Work 

We have considered the problem of modeling point-level spatial count data with a 

large number of zeros. We used a spatial generalized linear mixed model framework for 

the counts, employing a two-part approach to model incidence and abundance as separate 

but dependent processes, and utilized a bivariate Gaussian process model for 

characterizing the underlying spatial dependence.  We fit this two-part model using a 

Bayesian approach via MCMC.  

7.1   Summary  

We implemented our approach on simulated data and a real data set from an 

ecological application.  In addition to the two-stage full (TSF) model that includes 

dependence among random effects for counts, dependence among random effects for the 

binaries, and a cross-correlation between the two sets of random effects, we also tested 

the two-part model using simpler covariance functions for the random effects.  The sub-

models include independent random effects for the binary part (TSIB), removing the 

correlation between the two sets of random effects (TSNC), and a combination of the two 

(TSIBNC).  We obtained prediction maps that are consistent with their known values (in 

the case of simulated data), and parameter estimates that are consistent with expected 

biological trends (in the case of the real data set).  The two-part spatial modeling 
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approach is computationally complex, particularly in sampling spatial random effects in 

the incidence part of the model.  We found that spatial dependence was readily obtained 

from the model for positive counts (abundance) while the correlation parameters are only 

weakly identified by the binary outcomes in the incidence part of the model.  The 

resulting predicted surface is still based on both predicted incidence and counts, but its 

spatial structure was mostly derived from the spatial dependence among random effects 

in the predicted counts.  We also found that the regression parameters can be 

substantially affected by any collinearity between the covariates and the particular 

realization of the random effects in the data set, as we saw in the application to the 

simulated data.   

Some of the spatial patterns among the binary (S) random effects can be captured 

using the TSF model because it has a mechanism for correlation among the S as well as 

cross-correlation to the random effects in the positive part (Z) which are also spatially 

dependent.  The estimated regression coefficients for the positive counts are consistent 

across the three models.  For the binary response, the TSNC and TSF model provided 

estimates that are closest to the true values and, in the case of the real data set, more 

precise estimates of the intercept.   However, we note that in generalized linear mixed 

models, the regression parameters are interpreted conditional on the random effects.  We 

observed that the spatial random effects for the binary outcome varied considerably 

among the four models, hence numerical differences in the regression parameters are 

difficult to intepret.   

When the objective is both estimation and prediction, we recommend that the TSF 

and TSNC models be applied first.  If we are studying a spatial phenomenon with 
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excessive zeros that is compatible with a two-stage approach because the process 

determining incidence can be separated from the process determining abundance, then it 

is reasonable to assume that each set of spatial random effects are also spatially correlated 

and that there is cross-correlation between the two spatial processes.   The results show 

that even if the spatial correlation from the binary part is only weakly identified, some 

spatial patterns can still be extracted via the correlation and cross-correlation structures.  

For prediction, it may be more parsimonious and computationally less intensive to assess 

spatial random effects solely from the abundance model and use TSIBNC, which 

assumes independent binary spatial random effects and no correlation between the binary 

and count random effects.   On the other hand, if the focus is more on estimating the 

regression parameters, it may be advisable to apply the model while fixing the spatial 

dependence parameters to test whether the regression coefficients are consistent across a 

range of reasonable covariance parameters, much like the approach taken by Liang et al. 

(2008) in modeling dense point-level binary data.    

We also note that the sampling plan should be adjusted according to the emphasis 

of the study.  We designed a sampling plan with equal emphasis on estimating regression 

coefficients and covariance parameters, but if there is strong prior information regarding 

regression coefficients or if there is greater interest in spatial dependence, more samples 

should be allocated to closely-spaced locations.  

We submit that the two-part approach, while often computationally complex, is 

useful when a spatially continuous stochastic phenomenon is observed to have excessive 

zeros, and where the process that generates the zero observations (incidence) is likely 

separate but potentially related to the process that determines abundance.  The model can 
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have different covariates for each part, allowing the covariates to impact each part of the 

response differently.  Additionally, when it is reasonable to believe that these two 

mechanisms are related (not just because of shared covariates), there is a mechanism to 

relate the two processes using bivariate spatial random effects.  We encountered 

computational difficulties in our MCMC algorithm when sampling random effects in the 

incidence part of the model, but we again point out that the cross-covariance function can 

be used essentially as a nuisance parameter to explore the other parameters of the model 

(e.g., regression coefficients).   Finally, modeling the observations in an underlying 

spatially continuous stochastic process permits us to predict responses at arbitrary 

locations and generate a smooth predicted surface. 

The two-part approach also facilitates comparison across different data sets 

because incidence is completely specified in the binary model and is separate from the 

distribution of positive counts.  Because of this separation, the parameters have the same 

interpretation even for data sets that are not zero-inflated.   Consistency in interpretation 

is also useful when the model is applied repeatedly to more than one data set, which may 

not all have excessive zeros.  Examples are when modeling the same species over several 

fields or over time, or even for more than one species in the same field.  For instance, the 

two-part model can still be applied even when a variable has a regular Poisson 

distribution. In a ZIP model where the zeros are assumed to arise from a mixture of 

distributions, it is not clear how the zeros will be allocated when the data set is no longer 

zero-inflated.   
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7.2    Future Work 

While the two-stage model provides the flexibility to model data in accordance 

with a scientifically plausible data generating mechanism, it presents considerable 

computational challenges.  The size of the covariance matrix increases rapidly with the 

size of the data set, and the joint specification of the model makes it susceptible to 

instability in the model fitting process.  It would be interesting to explore the utility of 

alternative approaches for modeling large scale spatial data. Likelihood approximations 

such as those proposed by Caragea and Smith (2007) and Stein et al. (2004) could reduce 

computing intensity while still capturing the essential features of mean trends and spatial 

dependence.  Gaussian Markov random field approximations to spatial Gaussian 

processes have also been proposed by Rue and Tjelmeland (2002).  As an alternative to 

specifying the Gaussian process through its mean and covariance structure, Higdon 

(1998) and Higdon et al. (1999) use a process-convolution approach to develop non-

stationary space-time models for datasets that are too large for straightforward kriging 

based methods.  

In applying our models to simulated data we found that posterior means for the 

regression parameters, particularly for the abundance model, can be substantially affected 

by spurious collinearity between the known covariate and the particular realization of the 

random effects.  While this is a chance feature of this data set, it is clear that in any 

particular data set, we should be aware that the random effects, as implicit fixed effects in 

every realization, can be confounded with the effect of the covariates.   Reich et al. 

(2006) proposed diagnostics and methods to measure and alleviate the potential effects of 
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collinearity between fixed effects covariates and random effects for both normal and non-

normal observations with a CAR covariance structure for the random effects.  An 

extension of this approach to a spatial generalized linear mixed models setting for point-

referenced data would be of interest, as would a further extension to the two-stage 

modelling approach that we develop here.    

Another concern related to the issue of increasingly complex models is the choice 

of prior distributions.  Much of the work done to identify sensible priors was made using 

much simpler models, whereas these "sensible priors" are now used in more complicated 

models in an ad hoc fashion.  There seems to be little guidance in the choice of priors, 

and often the use of uniform priors does not reflect lack of prior knowledge in these 

models.     

We also did not explore the use of other covariance and cross-covariance 

functions for the spatial random effects.  Various covariance and cross-covariance 

functions are used in earth science applications for multivariate spatial prediction.  A 

variety of approaches for multivariable spatial data in a hierarchical Bayesian framework 

are also available, for instance, in Chapter 7 in Banerjee et al. (2004).  

Finally, there seems to be no established criteria for determining whether a data 

set has excessive zeros, and at what point (say, what proportion of zeros) we can say that 

a more sensible model choice should account for excess zeros.  
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